Abstract

In this paper, we report a novel low-loss and polarization-maintaining terahertz (THz) photonic crystal fiber with a triple-hole unit inside the core. The properties of birefringence, effective material loss, confinement loss, bending loss, power fraction, dispersion, and single-mode condition are analyzed in detail by using the finite element methods. Simulation results show that high birefringence at a level of 102 can be achieved by simply reducing the diameter of one air hole of the triple-hole core. And low effective material loss down to 30% of its bulk material loss can be achieved in our interested band around 3 THz, due to the high core porosity of the designed triple-hole core. Moreover, this design dramatically facilitates the fabrication process, because of the typical hexagonal structure with all circular air holes and avoiding the troublesome multiple sub-wavelength air holes in the core area. The results reveal that this proposal has potential for efficient THz transmission and other functional applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

Ultra low-loss hybrid core porous fiber for broadband applications

Md. Saiful Islam, Jakeya Sultana, Javid Atai, Derek Abbott, Sohel Rana, and Mohammad Rakibul Islam
Appl. Opt. 56(4) 1232-1237 (2017)

Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance

Kawsar Ahmed, Sawrab Chowdhury, Bikash Kumar Paul, Md. Shadidul Islam, Shuvo Sen, Md. Ibadul Islam, and Sayed Asaduzzaman
Appl. Opt. 56(12) 3477-3483 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription