Abstract

The properties of Goos–Hänchen (GH) shifts for transmitted and reflected light pulses in a cavity with an intracavity medium consist of carbon nanotube quantum dot nanostructures, which have been discussed theoretically by using the stationary phase theory. Our findings show that due to the presence of spin-orbit coupling, the maximum negative and positive shifts can be realized by modifying the absorption and dispersion properties of the intracavity medium. Moreover, the effect of the transverse magnetic field has been also considered as a new parameter for controlling the GH shifts in reflected and transmitted light beams. We hope that our proposed structure may be suitable for the generation of future all-optical system devices based on carbon nanotube quantum dot nanostructures.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription