Abstract

In this paper, a novel photonic-assisted Doppler frequency shift (DFS) measurement scheme based on an integrated dual-polarization Mach–Zehnder modulator is presented. In the proposed scheme, the DFS to be identified is transformed into a low-frequency electrical signal through an optical frequency-conversion link. The value of the DFS can be acquired by analyzing the spectrum of the low-frequency electrical signal. Meanwhile, the orientation of the DFS can be easily determined utilizing a 90° hybrid coupler. If the receiver is moving toward the transmitter, only the positive port has an output signal, while only the negative port has an output signal if the receiver is moving away from the transmitter. The scheme can simultaneously obtain the value and the orientation of the DFS. In addition, to investigate the frequency tunability of the proposed scheme, the DFS, which varies from 100 to 100 KHz at a step of 10 KHz for different microwave signals at frequencies of 10, 15, and 18 GHz, is demonstrated experimentally, and the errors are within ±5×106  Hz.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning

Bing Lu, Wei Pan, Xihua Zou, Xianglei Yan, Lianshan Yan, and Bin Luo
Opt. Lett. 40(10) 2321-2324 (2015)

True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light

Wei Li, Ning Hua Zhu, Li Xian Wang, Jia Sheng Wang, Jian Guo Liu, Yu Liu, Xiao Qiong Qi, Liang Xie, Wei Chen, Xin Wang, and Wei Han
Opt. Express 19(13) 12312-12324 (2011)

Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator

Xiaoyan Li, Aijun Wen, Xiaoming Ma, Wei Chen, Yongsheng Gao, Wu Zhang, Zhaoyang Tu, and Shuiying Xiang
Appl. Opt. 55(31) 8727-8731 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. C. Chen, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42, 2–21 (2006).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [Crossref]
  3. X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
    [Crossref]
  4. Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
    [Crossref]
  5. H. Zhang and S. Pan, “High resolution microwave frequency measurement using a dual-parallel Mach–Zehnder modulator,” IEEE Microw. Compon. Lett. 23, 623–625 (2013).
    [Crossref]
  6. X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20, 1989–1991 (2008).
    [Crossref]
  7. Z. Cao, Q. Wang, R. Lu, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored,” Opt. Lett. 39, 1497–1500 (2014).
    [Crossref]
  8. X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett. 37, 755–757 (2012).
    [Crossref]
  9. W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).
  10. X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
    [Crossref]
  11. B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34, 4639–4645 (2016).
    [Crossref]
  12. H. Emami, M. Hajihashemi, and S. E. Alavi, “Standalone microwave photonics Doppler shift estimation system,” J. Lightwave Technol. 34, 3596–3602 (2016).
    [Crossref]
  13. H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
    [Crossref]

2016 (6)

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

H. Emami, M. Hajihashemi, and S. E. Alavi, “Standalone microwave photonics Doppler shift estimation system,” J. Lightwave Technol. 34, 3596–3602 (2016).
[Crossref]

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34, 4639–4645 (2016).
[Crossref]

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

2015 (1)

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

2014 (1)

2013 (1)

H. Zhang and S. Pan, “High resolution microwave frequency measurement using a dual-parallel Mach–Zehnder modulator,” IEEE Microw. Compon. Lett. 23, 623–625 (2013).
[Crossref]

2012 (1)

2009 (1)

2008 (1)

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20, 1989–1991 (2008).
[Crossref]

2006 (1)

V. C. Chen, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42, 2–21 (2006).
[Crossref]

Alavi, S. E.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

H. Emami, M. Hajihashemi, and S. E. Alavi, “Standalone microwave photonics Doppler shift estimation system,” J. Lightwave Technol. 34, 3596–3602 (2016).
[Crossref]

Cao, Z.

Chen, V. C.

V. C. Chen, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42, 2–21 (2006).
[Crossref]

Chen, W.

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

Emami, H.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Standalone microwave photonics Doppler shift estimation system,” J. Lightwave Technol. 34, 3596–3602 (2016).
[Crossref]

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

Gao, Y.

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

Hajihashemi, M.

H. Emami, M. Hajihashemi, and S. E. Alavi, “Standalone microwave photonics Doppler shift estimation system,” J. Lightwave Technol. 34, 3596–3602 (2016).
[Crossref]

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

Koonen, A. M. J.

Li, W.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett. 37, 755–757 (2012).
[Crossref]

Li, X.

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

Liu, X.

Lu, B.

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34, 4639–4645 (2016).
[Crossref]

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

Lu, R.

Luo, B.

Ma, X.

Pan, S.

H. Zhang and S. Pan, “High resolution microwave frequency measurement using a dual-parallel Mach–Zehnder modulator,” IEEE Microw. Compon. Lett. 23, 623–625 (2013).
[Crossref]

Pan, W.

Pan, Y.

Peng, Z.

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

Shang, S.

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

Shao, L.

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

Tangdiongga, E.

Tu, Z.

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

van den Boom, H. P. A.

Wang, Q.

Wen, A.

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

Xiang, S.

Yan, L.

Yao, J.

Zhang, H.

H. Zhang and S. Pan, “High resolution microwave frequency measurement using a dual-parallel Mach–Zehnder modulator,” IEEE Microw. Compon. Lett. 23, 623–625 (2013).
[Crossref]

Zhang, W.

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

X. Li, A. Wen, X. Ma, W. Chen, Y. Gao, W. Zhang, Z. Tu, and S. Xiang, “Photonic microwave frequency measurement with tunable range based on dual-polarization modulator,” Appl. Opt. 55, 8727–8731 (2016).
[Crossref]

Zou, X.

B. Lu, W. Pan, X. Zou, Y. Pan, X. Liu, L. Yan, and B. Luo, “Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection,” J. Lightwave Technol. 34, 4639–4645 (2016).
[Crossref]

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

X. Zou, W. Li, W. Pan, B. Luo, L. Yan, and J. Yao, “Photonic approach to the measurement of time-difference-of-arrival and angle-of-arrival of a microwave signal,” Opt. Lett. 37, 755–757 (2012).
[Crossref]

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20, 1989–1991 (2008).
[Crossref]

Appl. Opt. (1)

IEEE Microw. Compon. Lett. (1)

H. Zhang and S. Pan, “High resolution microwave frequency measurement using a dual-parallel Mach–Zehnder modulator,” IEEE Microw. Compon. Lett. 23, 623–625 (2013).
[Crossref]

IEEE Photon. J. (2)

W. Zhang, A. Wen, Y. Gao, X. Li, and S. Shang, “Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading,” IEEE Photon. J. 8, 5500909 (2016).

H. Emami, M. Hajihashemi, and S. E. Alavi, “Improved sensitivity RF photonics Doppler frequency measurement system,” IEEE Photon. J. 8, 1–8 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Zou and J. Yao, “An optical approach to microwave frequency measurement with adjustable measurement range and resolution,” IEEE Photon. Technol. Lett. 20, 1989–1991 (2008).
[Crossref]

Z. Tu, A. Wen, Y. Gao, W. Chen, and Z. Peng, “A photonic technique for instantaneous microwave frequency measurement utilizing a phase modulator,” IEEE Photon. Technol. Lett. 28, 2795–2798 (2016).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

V. C. Chen, “The micro-Doppler effect in radar: phenomenon, model, and simulation study,” IEEE Trans. Aerosp. Electron. Syst. 42, 2–21 (2006).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

X. Zou, W. Li, B. Lu, W. Pan, L. Yan, and L. Shao, “Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation,” IEEE Trans. Microw. Theory Techn. 63, 1421–1430 (2015).
[Crossref]

J. Lightwave Technol. (3)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed photonic DFS measurement system based on a DPol-MZM. LD, laser diode; MZM, Mach–Zehnder modulator; PBC, polarization beam combiner; PC, polarization controller; Pol, polarizer; PD, photodiode. (a)–(e) Optical spectra at different locations in the system. (e) and (f) Electrical spectra at output of the PDs.

Fig. 2.
Fig. 2.

Optical spectra of optical signal before the OBPF (orange, dashed line) and after the OBPF (blue, solid line), transmission response of the OBPF (dark cyan, dotted line).

Fig. 3.
Fig. 3.

Waveforms of the upper branch and the lower branch for the Doppler frequency shifts at (a) +1  MHz and at (b) 1  MHz. Electrical spectra in the upper branch for the Doppler frequency shifts at (c) +1  MHz and at (d) 1  MHz.

Fig. 4.
Fig. 4.

Measured Doppler frequency shift versus the frequency offset and the corresponding errors for the frequency of the transmitted microwave signal at (a) 18 GHZ, at (b) 15 GHz, and at (c) 10 GHz.

Fig. 5.
Fig. 5.

Measurement spectra for different SNR at (a) 30 dB, at (b) 20 dB, at (c) 10 dB, and at (d) 0 dB.

Fig. 6.
Fig. 6.

Electrical spectra of the negative port and the positive port for the DFS at (a) and (b) +1  MHz, and at (c) and (d) 1  MHz.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

EMZM1=Ein[PTε2exp(jβ1sinωTt)+PEε2exp(jβ2sinωEt+jπ)],
EMZM2=Ein[PTε2exp(jβ1cos  ωTt)+PEε2exp(jβ2sinωEt+jπ)],
EMZM1=Ein{PTε2[J0(β1)+J1(β1)exp(jωTt)J1(β1)exp(jωTt)]PEε2[J0(β2)+J1(β2)exp(jωEt)J1(β2)exp(jωEt)]},
EMZM2=Ein{PTε2[J0(β1)+jJ1(β1)exp(jωTt)+jJ1(β1)exp(jωTt)]PEε2[J0(β2)+J1(β2)exp(jωEt)J1(β1)exp(jωEt)]},
EDpol-MZM=EMZM1x^+EMZM2y^.
EOBPF=Ein[PTε2J1(β1)exp(jωTt)PEε2J1(β2)exp(jωEt)]x^+Ein[PTε2jJ1(β1)exp(jωTt)PEε2J1(β2)exp(jωEt)]y^.
[IupperIlower]ηεPinPTPEJ1(β1)J1(β2)[cos2π(fTfE)tsin2π(fTfE)t],
[IupperIlower]ηεPinPTPEJ1(β1)J1(β2)[cos2πfdtsin2πfdt].
[IupperIlower]ηεPinPTPEJ1(β1)J1(β2)[cos2πfdtsin2πfdt]=ηεPinPTPEJ1(β1)J1(β2)[cos2πfdtsin2πfdt].
[INIP]=ηεPinPTPEJ1(β1)J1(β2)[2sin2πfdt0].
[INIP]=ηεPinPTPEJ1(β1)J1(β2)[02sin2πfdt].
[INIP]=ηεPinPTPEJ1(β1)J1(β2)×[(1+cosθ1)2+sin2θ1  sin(ωdt+α)(1cosθ1)2+sin2θ1sin(ωdtβ)],
[INIP]=ηεPinPTPEJ1(β1)J1(β2)×[(γcosθ2+1)2+(γsinθ2)2sin(wdt+α)(γcosθ21)2+(γsinθ2)2sin(wdt+β)],

Metrics