Abstract

Measuring the change in the optical alignment of a camera attached to a telescope is necessary to perform astrometric measurements. Camera movement when the telescope is refocused changes the plate constants, invalidating the calibration. Monitoring the shift in the optical axis requires a stable internal reference source. This is easily implemented in a Petzval refractor by adding an illuminated pinhole and a small obscuration that creates a spot of Arago on the camera. Measurements of the optical axis shift for a commercial telescope are given as an example.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Bruns, “A do-it-yourself relativity test,” Sky & Telescope 132, 32–35 (2016).
  2. C. M. Will, “The 1919 measurement of the deflection of light,” Classical and Quantum Gravity 32, 1–14 (2015).
  3. B. F. Jones, “Gravitational deflection of light: solar eclipse of 30  June  1973 II, plate reductions,” Astron. J. 81, 455–463 (1976).
    [Crossref]
  4. R. A. Brune, and Texas Mauritanian Eclipse Team, “Gravitational deflection of light: solar eclipse of 30  June  1973 I, description of procedures and final results,” Astron. J. 81, 452–454 (1976).
    [Crossref]
  5. E. F. Freundlich and W. Ledermann, “The problem of an accurate determination of the relativistic light deflection,” Mon. Not. R. Astron. Soc. 104, 40–47 (1944).
    [Crossref]
  6. L. Lindegren, and Gaia Collaboration, “Gaia data release 1,” Astron. Astrophys. 595, A4 (2016).
    [Crossref]
  7. J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984).
    [Crossref]
  8. G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
    [Crossref]
  9. L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
    [Crossref]
  10. MaximDL software is a product of Diffraction Limited/SBIG, 59 Grenfell Crescent, Unit B, Ottawa, ON K2G 0G3, Canada.

2016 (2)

D. G. Bruns, “A do-it-yourself relativity test,” Sky & Telescope 132, 32–35 (2016).

L. Lindegren, and Gaia Collaboration, “Gaia data release 1,” Astron. Astrophys. 595, A4 (2016).
[Crossref]

2015 (2)

G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
[Crossref]

C. M. Will, “The 1919 measurement of the deflection of light,” Classical and Quantum Gravity 32, 1–14 (2015).

1990 (1)

L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
[Crossref]

1984 (1)

J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984).
[Crossref]

1976 (2)

B. F. Jones, “Gravitational deflection of light: solar eclipse of 30  June  1973 II, plate reductions,” Astron. J. 81, 455–463 (1976).
[Crossref]

R. A. Brune, and Texas Mauritanian Eclipse Team, “Gravitational deflection of light: solar eclipse of 30  June  1973 I, description of procedures and final results,” Astron. J. 81, 452–454 (1976).
[Crossref]

1944 (1)

E. F. Freundlich and W. Ledermann, “The problem of an accurate determination of the relativistic light deflection,” Mon. Not. R. Astron. Soc. 104, 40–47 (1944).
[Crossref]

Brune, R. A.

R. A. Brune, and Texas Mauritanian Eclipse Team, “Gravitational deflection of light: solar eclipse of 30  June  1973 I, description of procedures and final results,” Astron. J. 81, 452–454 (1976).
[Crossref]

Bruns, D. G.

D. G. Bruns, “A do-it-yourself relativity test,” Sky & Telescope 132, 32–35 (2016).

Forgham, J. L.

J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984).
[Crossref]

Freundlich, E. F.

E. F. Freundlich and W. Ledermann, “The problem of an accurate determination of the relativistic light deflection,” Mon. Not. R. Astron. Soc. 104, 40–47 (1944).
[Crossref]

Griffith, L. V.

L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
[Crossref]

Harvey, J. E.

J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984).
[Crossref]

Jones, B. F.

B. F. Jones, “Gravitational deflection of light: solar eclipse of 30  June  1973 II, plate reductions,” Astron. J. 81, 455–463 (1976).
[Crossref]

Ledermann, W.

E. F. Freundlich and W. Ledermann, “The problem of an accurate determination of the relativistic light deflection,” Mon. Not. R. Astron. Soc. 104, 40–47 (1944).
[Crossref]

Lindegren, L.

L. Lindegren, and Gaia Collaboration, “Gaia data release 1,” Astron. Astrophys. 595, A4 (2016).
[Crossref]

Ma, G.

G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
[Crossref]

Schenz, R. F.

L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
[Crossref]

Sommargren, G. E.

L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
[Crossref]

Will, C. M.

C. M. Will, “The 1919 measurement of the deflection of light,” Classical and Quantum Gravity 32, 1–14 (2015).

Zeng, G.

G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
[Crossref]

Zhao, B.

G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
[Crossref]

Am. J. Phys. (1)

J. E. Harvey and J. L. Forgham, “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243–247 (1984).
[Crossref]

Astron. Astrophys. (1)

L. Lindegren, and Gaia Collaboration, “Gaia data release 1,” Astron. Astrophys. 595, A4 (2016).
[Crossref]

Astron. J. (2)

B. F. Jones, “Gravitational deflection of light: solar eclipse of 30  June  1973 II, plate reductions,” Astron. J. 81, 455–463 (1976).
[Crossref]

R. A. Brune, and Texas Mauritanian Eclipse Team, “Gravitational deflection of light: solar eclipse of 30  June  1973 I, description of procedures and final results,” Astron. J. 81, 452–454 (1976).
[Crossref]

Classical and Quantum Gravity (1)

C. M. Will, “The 1919 measurement of the deflection of light,” Classical and Quantum Gravity 32, 1–14 (2015).

J. Opt. (1)

G. Ma, G. Zeng, and B. Zhao, “Arago-Poisson diffraction spot observed in the shadow area of an axicon lens,” J. Opt. 44, 391–396 (2015).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

E. F. Freundlich and W. Ledermann, “The problem of an accurate determination of the relativistic light deflection,” Mon. Not. R. Astron. Soc. 104, 40–47 (1944).
[Crossref]

Rev. Sci. Instrum. (1)

L. V. Griffith, R. F. Schenz, and G. E. Sommargren, “Magnetic alignment and the Poisson alignment reference system,” Rev. Sci. Instrum. 61, 2138–2154 (1990).
[Crossref]

Sky & Telescope (1)

D. G. Bruns, “A do-it-yourself relativity test,” Sky & Telescope 132, 32–35 (2016).

Other (1)

MaximDL software is a product of Diffraction Limited/SBIG, 59 Grenfell Crescent, Unit B, Ottawa, ON K2G 0G3, Canada.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Tele Vue Optics NP101is and a Finger Lakes Instrumentation ML-8051 camera make the ideal combination for measuring stellar deflections during the 2017 total solar eclipse.

Fig. 2.
Fig. 2.

Change in the optical distortion when the camera alignment is moved by 10 pixels from the original calibration configuration is a quadratic function in distance from the optical center.

Fig. 3.
Fig. 3.

Optical design of the Tele Vue Nagler-Petzval telescope includes front and rear lens cells. An illuminated pinhole placed near the front lens and an obscuration placed on the rear lens creates the spot of Arago at the camera focal plane. Dotted lines show the ray paths for collimated input light, while the solid lines show the ray paths starting at the pinhole.

Fig. 4.
Fig. 4.

Spot of Arago is imaged by the CCD, including a well-defined central peak. The image is 800  pixels×800  pixels.

Fig. 5.
Fig. 5.

Central half of the image intensity from the previous figure. The vertical scale is in arbitrary units.

Fig. 6.
Fig. 6.

Random shift in the optical axis in 10 trials where the telescope was refocused between measurements. The RMS of the displacement is 5 μm.

Metrics