Abstract

A planar photonic crystal (PPC) structure capable of simultaneous detection of multiple parameters is presented in this paper. We analytically and numerically demonstrate that the reflection spectrum of the PPC structure exhibits multiple high-Q resonant modes that could respond distinctively to different external perturbations, rendering the PPC sensor superior capabilities for multiparameter sensing. We further demonstrate simultaneous pressure and temperature sensing with a PPC sensor. Other advantages of this device include efficient free-space-to-multimode coupling, high sensitivity, on-chip integration, and wafer-scale fabrications.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Yongyao Chen, Haijun Liu, Zhijian Zhang, Ashwani K. Gupta, and Miao Yu, "Planar photonic crystal based multifunctional sensors: publisher’s note," Appl. Opt. 56, 2397-2397 (2017)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-56-9-2397

23 February 2017: A correction was made to Eq. (10).


OSA Recommended Articles
Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects

Chenyang Zhao, Xuetao Gan, Sheng Liu, Yan Pang, and Jianlin Zhao
Opt. Express 22(8) 9360-9367 (2014)

Pressure sensor based on flexible photonic crystal membrane

Torben Karrock and Martina Gerken
Biomed. Opt. Express 6(12) 4901-4911 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. E. Spichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications (Wiley, 2008).
  2. U. Weimar and W. Göpel, “Chemical imaging: II. Trends in practical multiparameter sensor systems,” Sens. Actuators B 52, 143–161 (1998).
    [Crossref]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [Crossref]
  4. M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1318 (1997).
    [Crossref]
  5. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
    [Crossref]
  6. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Opt. Lett. 35, 2810–2812 (2010).
    [Crossref]
  7. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
    [Crossref]
  8. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [Crossref]
  9. W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
    [Crossref]
  10. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
    [Crossref]
  11. S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
    [Crossref]
  12. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  13. M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [Crossref]
  14. V. Toccafondo, J. García-Rupérez, M. Bañuls, A. Griol, J. Castelló, S. Peransi-Llopis, and A. Maquieira, “Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor,” Opt. Lett. 35, 3673–3675 (2010).
    [Crossref]
  15. A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
    [Crossref]
  16. I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
    [Crossref]
  17. C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
    [Crossref]
  18. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008).
    [Crossref]
  19. M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [Crossref]
  20. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
    [Crossref]
  21. M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [Crossref]
  22. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).
  23. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
    [Crossref]
  24. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
    [Crossref]

2015 (1)

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

2013 (1)

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

2012 (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

2010 (2)

2009 (2)

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008).
[Crossref]

2007 (2)

M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32, 1800–1802 (2007).
[Crossref]

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

2006 (2)

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

2004 (2)

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

2002 (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

1998 (1)

U. Weimar and W. Göpel, “Chemical imaging: II. Trends in practical multiparameter sensor systems,” Sens. Actuators B 52, 143–161 (1998).
[Crossref]

1997 (2)

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1318 (1997).
[Crossref]

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

1995 (1)

1993 (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

Agan, S.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

Andreani, L.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Ay, F.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

Aydinli, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Bañuls, M.

Beheim, G.

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1318 (1997).
[Crossref]

Belotti, M.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Castelló, J.

Chow, Y.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

Culshaw, B.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

D’orazio, A.

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Dakin, J. P.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

de Leonardis, F.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Desario, M.

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Dong, L.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Emmerson, G. D.

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Falconi, M. C.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Fan, S.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Galli, M.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

García-Rupérez, J.

Gaylord, T.

Giasi, C.

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Göpel, W.

U. Weimar and W. Göpel, “Chemical imaging: II. Trends in practical multiparameter sensor systems,” Sens. Actuators B 52, 143–161 (1998).
[Crossref]

Grann, E. B.

Griol, A.

Grobnic, D.

Han, M.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Jin, W.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Kim, J.-Y.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Kim, S. H.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Kocabas, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

Kocabas, C.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

Konstantaki, M.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

Kouamo, M. T.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Krauss, T.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Kwon, M.-K.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Lee, K.-D.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Lit, J. W.

Liu, W.-K.

Liu, Y.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, and J. W. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008).
[Crossref]

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Maquieira, A.

Mescia, L.

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Metev, S.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Meteva, K.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Michie, W. C.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

Mihailov, S. J.

Moharam, M.

Niu, S.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

O’Faolain, L.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Palma, G.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Pan, C.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Park, S.-J.

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Passaro, V.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Peransi-Llopis, S.

Petruzzelli, V.

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Pieper, W.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Pommet, D. A.

Portalupi, S.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Prudenzano, F.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Reekie, L.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

Riziotis, C.

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Scarcia, W.

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Smelser, C. W.

Smith, P. G.

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Sparrow, I. J.

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Spichiger-Keller, U. E.

U. E. Spichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications (Wiley, 2008).

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1318 (1997).
[Crossref]

Thursby, G.

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

Toccafondo, V.

Vollertsen, F.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Wang, A.

Wang, Z. L.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Watts, S. P.

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Wei, L.

Weimar, U.

U. Weimar and W. Göpel, “Chemical imaging: II. Trends in practical multiparameter sensor systems,” Sens. Actuators B 52, 143–161 (1998).
[Crossref]

Wenke, G.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

Xu, M.

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Yang, Q.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

Yu, R.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Zhou, D.-P.

Zhu, G.

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem. 84, 793–821 (2012).
[Crossref]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[Crossref]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Electron. Lett. (1)

M. Xu, L. Reekie, Y. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[Crossref]

IEEE Sens. J. (1)

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE Sens. J. 6, 331–339 (2006).
[Crossref]

J. Appl. Phys. (1)

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96, 7147–7153 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Sens. (1)

I. J. Sparrow, P. G. Smith, G. D. Emmerson, S. P. Watts, and C. Riziotis, “Planar Bragg grating sensors—Fabrication and applications: a review,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Nanotechnology (1)

S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, 055306 (2007).
[Crossref]

Nat. Photonics (1)

C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, and Z. L. Wang, “High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array,” Nat. Photonics 7, 752–758 (2013).
[Crossref]

Opt. Eng. (2)

W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: error analysis,” Opt. Eng. 36, 598–609 (1997).
[Crossref]

M. Tabib-Azar and G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation,” Opt. Eng. 36, 1307–1318 (1997).
[Crossref]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

A. D’orazio, M. Desario, C. Giasi, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Design of planar optic sensors for hydrocarbon detection,” Opt. Quantum Electron. 36, 507–526 (2004).
[Crossref]

Phys. Rev. B (1)

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Polymer (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer 47, 4893–4896 (2006).
[Crossref]

Sens. Actuators B (1)

U. Weimar and W. Göpel, “Chemical imaging: II. Trends in practical multiparameter sensor systems,” Sens. Actuators B 52, 143–161 (1998).
[Crossref]

Sensors (1)

W. Scarcia, G. Palma, M. C. Falconi, F. de Leonardis, V. Passaro, and F. Prudenzano, “Electromagnetic modelling of fiber sensors for low-cost and high sensitivity temperature monitoring,” Sensors 15, 29855–29870 (2015).
[Crossref]

Other (2)

U. E. Spichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications (Wiley, 2008).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical properties of PPCs. (a) Schematic of on-chip polymer-based PPC sensors fabricated on a substrate (left). The inset (right) shows a single sensor element. The propagation of light is confined in the x y plane. The environmental medium is air ( n 1 = 1 ). The PPC structure is made of polystyrene ( n 2 = 1.59 ), and the substrate is fused silica ( n 3 = 1.45 ). The top periodic pattern has a thickness h = 100    nm , a grating width w = 100    nm , and a periodicity p = 400    nm . The bottom layer thickness of the PPC structure is t = 2000    nm . TE- or TM-polarized light is incident from the bottom substrate. (b) Multimode resonance of PPCs for normally incident light with TE polarization. The reflection spectrum exhibits fundamental and higher-order resonance modes. The simulation is based on the RCWA. (c) The Q -factors corresponding to different resonance modes.

Fig. 2.
Fig. 2.

Resonance conditions of PPCs. (a) The electric field distributions of the fundamental (left) and fourth-order modes (right). The double-sided arrows indicate the spatial periodicity (modal wavelength) of the fundamental (yellow) and the higher-order modes (black). (b) Schematic of the synergistic effects of longitudinal and transverse resonant conditions. (c) The resonance wavelengths of PPCs corresponding to different resonant modes. The analytical results obtained by using Eqs. (2)–(4) are compared with the RCWA simulations.

Fig. 3.
Fig. 3.

Influence of environmental perturbations on the PPC resonance. (a) Schematic of the external stimuli (e.g., pressure, strain, and temperature) induced structure deformations as well as refractive index changes in the PPC structures. (b) Resonance shift with respect to the refractive index change of the polymer layer in the PPC structure. (c) PPC resonance shift due to lattice variations (longitudinal deformation). (d) PPC resonance shift due to thickness changes (transverse deformation). The analytical results are compared with the RCWA simulations.

Fig. 4.
Fig. 4.

Optical resonance of PPCs subjected to pressure and temperature variations. (a)–(e) The changes of the reflection spectra under the external pressure field for the fundamental and higher-order modes. (f)–(j) The variations of the reflection spectra under the environmental temperature change for different resonant modes ( zeroth fourth orders). (k) The wavelength shifts of the PPC resonant modes with respect to the applied pressure field. (l) The resonance shifts versus temperature for the fundamental and higher-order modes. Note that, due to the small elasto-optic and thermal-optic coefficients of the ambient medium (air) and the rigid substrate (fused silica) relative to the PPC polymer material [23,24], the related refractive index variations in the air and the substrate can be neglected.

Tables (3)

Tables Icon

Table 1. Material Properties of PPCs Made of Polystyrene

Tables Icon

Table 2. Pressure-Induced Stress and Strain Components in PPC

Tables Icon

Table 3. Temperature-Induced Stress and Strain in PPC

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( Δ ψ 1 Δ ψ N ) = ( K 1 ψ 1 K 1 ψ N K N ψ 1 K N ψ N ) 1 ( Δ λ 1 Δ λ N ) ,
β = 2 π / p .
K d φ 21 φ 23 = N π ,
φ 2 j TE = arctan ( 2 π / p ) 2 ( 2 π n j / λ ) 2 ( 2 π n 2 / λ ) 2 ( 2 π / p ) 2 , j = 1 or 3 ,
φ 2 j TM = arctan ( n 2 n j ) 4 ( 2 π / p ) 2 ( 2 π n j / λ ) 2 ( 2 π n 2 / λ ) 2 ( 2 π / p ) 2 .
n j = n j o [ C j 1 σ j x + C j 2 ( σ j y + σ j z ) ] + α j Δ T ,
p = ( 1 + ϵ x ) p o ,
d = ( 1 + ϵ y ) d o .
N π = d o ( 1 + ϵ y ) ( 2 π / Λ ) 2 { n 2 o [ C 21 σ 2 x + C 22 ( σ 2 y + σ 2 z ) ] + α 2 Δ T } 2 [ 2 π p o 1 / ( 1 + ϵ x ) ] 2 j = 1 , 3 arctan [ 2 π p o 1 / ( 1 + ϵ x ) ] 2 ( 2 π / Λ ) 2 { n j o [ C j 1 σ j x + C j 2 ( σ j y + σ j z ) + α j Δ T ] } 2 ( 2 π / Λ ) 2 { n 2 o [ C 21 σ 2 x + C 22 ( σ 2 y + σ 2 z ) + α 2 Δ T ] } 2 [ 2 π p o 1 / ( 1 + ϵ x ) ] 2 · η 4 ,
η = 1 , for    TE ,
η = n 2 o [ C 21 σ 2 x + C 22 ( σ 2 y + σ 2 z ) + α 2 Δ T ] n j o [ C j 1 σ j x + C j 2 ( σ j y + σ j z ) + α j Δ T ] , for    TM .
( Δ T Δ P ) = K T P 1 ( Δ λ o Δ λ 4 ) = ( K T 0 K P 0 K T 4 K P 4 ) 1 ( Δ λ o Δ λ 4 ) = 1 K T o K P 4 K P o K T 4 ( K P 4 K P o K T 4 K T o ) ( Δ λ o Δ λ 4 ) ,

Metrics