Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes

Not Accessible

Your library or personal account may give you access

Abstract

We propose a new orbital angular momentum (OAM) erbium-doped fiber amplifier based on a circular photonic crystal fiber, which can support a total of 18 modes (14 OAM modes) over C-band. A correction factor is proposed to modify the overlap factor, with the aim of evaluating the performance of the amplifier more accurately. We found that the confined doping profile can help optimize the differential model gain (DMG). Numerical simulations suggest that the proposed OAM fiber amplifier can provide a gain larger than 20 dB for all 14 OAM modes, with the small DMG less than 0.2 dB and the noise figure lower than 3.5 dB across the C-band.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Amplification of 18 OAM modes in a ring-core erbium-doped fiber with low differential modal gain

Jingwen Ma, Fei Xia, Shi Chen, Shuhui Li, and Jian Wang
Opt. Express 27(26) 38087-38097 (2019)

Erbium-doped circular photonic crystal fiber design for the amplification of 20 OAM modes

Aditi Mehta, Mohd Rehan, and Vipul Rastogi
J. Opt. Soc. Am. B 38(12) F138-F144 (2021)

Amplification of 12 OAM Modes in an air-core erbium doped fiber

Qiongyue Kang, Patrick Gregg, Yongmin Jung, Ee Leong Lim, Shaif-ul Alam, Siddharth Ramachandran, and David J. Richardson
Opt. Express 23(22) 28341-28348 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.