Abstract

We experimentally reveal the pump-induced loss in a Ti:sapphire laser crystal with 451-nm indium gallium nitride (InGaN) laser diode pumping and show that 478-nm pumping can reduce such loss. The influence of the pump-induced loss at 451-nm pumping is significant even for a crystal that exhibits higher effective figure-of-merit and excellent laser performance at 520-nm pumping. We demonstrate the power scaling of a Ti:sapphire laser by combining 478- and 520-nm InGaN laser diodes and obtain CW output power of 593 mW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer
Opt. Express 23(23) 30043-30048 (2015)

Power scaling of a directly diode-laser-pumped Ti:sapphire laser

Peter W. Roth, David Burns, and Alan J. Kemp
Opt. Express 20(18) 20629-20634 (2012)

Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

Charles G. Durfee, Tristan Storz, Jonathan Garlick, Steven Hill, Jeff A. Squier, Matthew Kirchner, Greg Taft, Kevin Shea, Henry Kapteyn, Margaret Murnane, and Sterling Backus
Opt. Express 20(13) 13677-13683 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Roth, A. Maclean, D. Burns, and A. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009).
    [Crossref]
  2. P. Roth, A. Maclean, D. Burns, and A. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36, 304–306 (2011).
    [Crossref]
  3. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
    [Crossref]
  4. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
    [Crossref]
  5. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:sapphire laser with up to 450  mW average power,” Opt. Express 23, 30043–30048 (2015).
    [Crossref]
  6. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20, 13677–13683 (2012).
    [Crossref]
  7. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
    [Crossref]
  8. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
    [Crossref]
  9. A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850–1863 (1997).
    [Crossref]
  10. N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
    [Crossref]
  11. A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
    [Crossref]
  12. W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

2015 (1)

2014 (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

2013 (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (1)

1997 (1)

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850–1863 (1997).
[Crossref]

1995 (1)

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

1988 (2)

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

1980 (1)

N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
[Crossref]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Aggarwal, R. L.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

Backus, S.

Basun, S. A.

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

Burns, D.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[Crossref]

Durfee, C. G.

Fahey, R. E.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Garlick, J.

Gürel, K.

Hakobyan, S.

Hill, S.

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Hoffmann, M.

Hoffstadt, A.

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850–1863 (1997).
[Crossref]

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Kannari, F.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Kapteyn, H.

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Kemp, A.

Kirchner, M.

Kokta, M. R.

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Maclean, A.

McClure, D. S.

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

Moskvin, N. A.

N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
[Crossref]

Murnane, M.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Resan, B.

Rohrbacher, A.

Roth, P.

Sanchez, A.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

Sandulenko, V. A.

N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
[Crossref]

Saraceno, C. J.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

Schilt, S.

Shea, K.

Sidorova, E. A.

N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
[Crossref]

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[Crossref]

Squier, J. A.

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

Storz, T.

Strauss, A. J.

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

Südmeyer, T.

Taft, G.

Weingarten, K.

Wittwer, V. J.

Wong, W. C.

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[Crossref]

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7, 022702 (2014).
[Crossref]

IEEE J. Quantum Electron. (3)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24, 1077–1099 (1988).
[Crossref]

A. Hoffstadt, “Design and performance of a high-average-power flashlamp-pumped Ti:sapphire laser and amplifier,” IEEE J. Quantum Electron. 33, 1850–1863 (1997).
[Crossref]

A. Sanchez, A. J. Strauss, R. L. Aggarwal, and R. E. Fahey, “Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3,” IEEE J. Quantum Electron. 24, 995–1002 (1988).
[Crossref]

J. Appl. Spectrosc. (1)

N. A. Moskvin, V. A. Sandulenko, and E. A. Sidorova, “Color centers and luminescence in corundum crystals containing titanium,” J. Appl. Spectrosc. 32, 592–596 (1980).
[Crossref]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966).
[Crossref]

Phys. Rev. (1)

W. C. Wong, D. S. McClure, S. A. Basun, and M. R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitations,” Phys. Rev. B51, 5683–5692 (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Experimental setup for examination of pump-induced loss with a green LD at 520 nm, and a blue LD at 451 or 478 nm.

Fig. 2.
Fig. 2.

Output laser performance of Ti:sapphire laser pumped by InGaN LDs. The laser cavity was optimized at the highest pumping power, and then the pump power gradually decreased. Solid square plots show change when only 451-nm LD power was decreased, followed by the 520-nm LD shown by open square plots. Similarly, solid circles show changes when only 520-nm LD power was decreased, followed by the 451-nm LD shown by open circle plots.

Fig. 3.
Fig. 3.

Experimental result at dual-wavelength pumping with 451- and 520-nm LDs.

Fig. 4.
Fig. 4.

Temporal output power reduction in P / P 0 at dual-wavelength pumping with 451- and 520-nm LDs for various incident 451-nm pump powers.

Fig. 5.
Fig. 5.

Response of laser power at 451-nm LD-only excitation. No degradation in laser power is visible during pumping.

Fig. 6.
Fig. 6.

Experimental result at dual-wavelength pumping with 478- and 520-nm LDs.

Fig. 7.
Fig. 7.

Schematic of Ti:sapphire laser pumped directly with green (520-nm) and blue (478-nm) LDs in CW operation.

Fig. 8.
Fig. 8.

Plots of output laser power as a function of absorbed pump power for various output couplers. Scale of axes of each figure was adjusted for direct comparisons of slope efficiencies by tilt of linear plots. [Crystal, pump wavelength (nm)]: (a) (A, 520); (b) (A, 478); (c) (A, 451); (d) (B, 520); (e) (B, 478); (f) (B, 451); (g) (C, 520); (h) (C, 478); and (i) (C, 451).

Fig. 9.
Fig. 9.

Schematic of energy diagram and light-induced charge-transfer transition model.

Fig. 10.
Fig. 10.

Comparison of plots of output power of Ti:sapphire laser pumped with green (520-nm) and blue (478-nm) LDs in CW operation when changing output coupler's transmission. The 4-mm-long Crystal C was used. Solid symbols denote that the power of 478-nm LDs was gradually decreased keeping the full-power 520-nm pumping. Then the power of 520-nm LDs was gradually decreased without 478-nm pumping as indicated by open symbols.

Fig. 11.
Fig. 11.

Plots of output power of Ti:sapphire laser pumped with green (520-nm) and blue (478-nm) LDs in CW operation. The 2.5-mm-long Crystal A was used. The output coupling was 4.7%.

Tables (1)

Tables Icon

Table 1. Summary of Pump-induced Loss α 790 Analysis by Findlay–Clay Plots ( α 790 , FC ) and Caird Plots ( α 790 , C ) a

Metrics