Abstract

This paper describes a new method based on the use of a broadband monitoring system to determine the spectral dependence of the optical constants of a layer without using a dispersion model.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer

Séverin L. Nadji, Michel Lequime, Thomas Begou, Cihan Koc, Catherine Grézes-Besset, and Julien Lumeau
Appl. Opt. 57(4) 877-883 (2018)

Computational manufacturing as a key element in the design–production chain for modern multilayer coatings

Tatiana V. Amotchkina, Sebastian Schlichting, Henrik Ehlers, Michael K. Trubetskov, Alexander V. Tikhonravov, and Detlev Ristau
Appl. Opt. 51(31) 7604-7615 (2012)

Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements

Bertrand Bovard, Fred J. Van Milligen, Michael J. Messerly, Steven G. Saxe, and H. Angus Macleod
Appl. Opt. 24(12) 1803-1807 (1985)

References

  • View by:
  • |
  • |
  • |

  1. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
    [Crossref]
  2. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
    [Crossref]
  3. J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Appl. Opt. 22, 3191–3200 (1983).
    [Crossref]
  4. L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
    [Crossref]
  5. D. Stojcevski, “Développement d’un contrôle optique multicritère—Application à la détermination d’indice in situ,” Ph.D. thesis (Aix-Marseille Université, 2015).
  6. OptiChar, http://www.optilayer.com/products-and-services/optichar .
  7. L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
    [Crossref]
  8. F. Lemarchand, “Application of clustering global optimization to thin film design problems,” Opt. Express 22, 5166–5176 (2014).
    [Crossref]
  9. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053–3060 (2002).
    [Crossref]
  10. S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

2014 (1)

2013 (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

2011 (2)

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[Crossref]

2003 (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[Crossref]

2002 (1)

1983 (1)

Amotchkina, T. V.

Begou, T.

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

DeBell, G.

Dobrowolski, J. A.

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Grezes-Besset, C.

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Grilli, M. L.

Ho, F. C.

Kaiser, N.

Koc, C.

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Lemarchand, F.

F. Lemarchand, “Application of clustering global optimization to thin film design problems,” Opt. Express 22, 5166–5176 (2014).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Lumeau, J.

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Nadji, S. L.

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Pervak, V.

Poelman, D.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[Crossref]

Ristau, D.

Smet, P. F.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[Crossref]

Stojcevski, D.

D. Stojcevski, “Développement d’un contrôle optique multicritère—Application à la détermination d’indice in situ,” Ph.D. thesis (Aix-Marseille Université, 2015).

Sytchkova, A. K.

Tikhonravov, A. V.

Trubetskov, M. K.

Waldorf, A.

Appl. Opt. (3)

J. Eur. Opt. Soc. Rapid Publ. (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013).
[Crossref]

J. Phys. D (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[Crossref]

Opt. Express (1)

Thin Solid Films (1)

L. Gao, F. Lemarchand, and M. Lequime, “Comparison of different dispersion models for single layer optical thin film index determination,” Thin Solid Films 520, 501–509 (2011).
[Crossref]

Other (3)

D. Stojcevski, “Développement d’un contrôle optique multicritère—Application à la détermination d’indice in situ,” Ph.D. thesis (Aix-Marseille Université, 2015).

OptiChar, http://www.optilayer.com/products-and-services/optichar .

S. L. Nadji, M. Lequime, T. Begou, C. Koc, C. Grezes-Besset, and J. Lumeau, “Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer” (in prepartion).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. BBM data (middle graph) processed along the wavelength (front graph) or time (rear and side graphs) dimensions.
Fig. 2.
Fig. 2. Schematic representation of the DIBS chamber equipped with a dual optical monitoring system.
Fig. 3.
Fig. 3. Signal recorded by the BBM channel at 600 nm before, during, and after the deposition of a 7H Ta 2 O 5 layer.
Fig. 4.
Fig. 4. Time derivative of the filtered signal at 600 nm. Pink curve, time derivative of the transmittance; red dots, zeros of this derivative.
Fig. 5.
Fig. 5. Linear relationship between the QWOT’s order and the time position of the zeros of the transmittance derivative. Red dots, zeros of the transmission derivative; black straight line, linear fit; blue dot, starting time of the layer growth.
Fig. 6.
Fig. 6. Determination of the refractive index of the layer at λ 0 = 600.3    nm . Light blue curve, raw transmission data; dark blue curve, filtered transmission data; green triangles, minima of transmission; green straight line, linear fitting of the transmission minima; green dot, T min ( λ 0 , t 0 ) transmission.
Fig. 7.
Fig. 7. Spectral dependence of the refractive index n 1 ( λ ) of the tantala layer.
Fig. 8.
Fig. 8. Determination of the extinction coefficient of the layer at λ n = 419.7    nm . Light blue curve, raw transmission data; dark blue curve, filtered transmission data; red triangles, maxima of transmission; red straight line, linear fitting of the transmission maxima.
Fig. 9.
Fig. 9. Spectral dependence of the extinction coefficient κ ¯ 1 ( λ ) of the tantala layer after filtering. Blue circles, raw data; red curve, filtered data.
Fig. 10.
Fig. 10. Comparison of the experimental spectral transmittance measurements at the end of the high-index layer deposition and the modeled data computed with the optical constants determined by our method. Left graph: blue circles, measured data; red points, modeled data. Right graph: residual discrepancy between measured and modeled data.
Fig. 11.
Fig. 11. Comparison between the time dependence of the transmittance measured at λ n = 399.9    nm and the modeled data computed with the optical constants n 1 ( λ n ) and κ ¯ 1 ( λ n ) determined by our method. Top graphs: green curve, experimental data; red curve, modeled data. Bottom graphs: red circles, difference between experimental and modeled transmittance.
Fig. 12.
Fig. 12. Spectral dependence of the time discrepancy function (in %).
Fig. 13.
Fig. 13. Spectral dependence of the refractive index of the tantala layer. Left graph: red dots, before refining. Right graph: blue dots, after refining.
Fig. 14.
Fig. 14. Comparison of the results provided by three different methods: green curves, OptiChar software; cyan curves, Gao-Lemarchand method; red curves, our method. Spectral dependence of the refractive index (left); spectral dependence of the optical thickness (middle); spectral dependence of the extinction coefficient (right).
Fig. 15.
Fig. 15. Evolution of the refined refractive index n 1 ( λ 0 ) with the thickness of the deposited layer. In the early time of the deposition (left); during the whole growing of the layer (right).
Fig. 16.
Fig. 16. Spectral dependence of the refractive index of a tantala layer for five deposition runs and two deposition processes. Process A, Run #1, green dots; Process A, Run #2, blue dots; Process A, Run #3, red dots; Process A, Run #4, yellow dots; Process B, Run #1, violet diamonds.
Fig. 17.
Fig. 17. Spectral dependence of the extinction coefficient of a tantala layer for five deposition runs and two deposition processes. Process A, Run #1, green dots; Process A, Run #2, blue dots; Process A, Run #3, red dots; Process A, Run #4, yellow dots; Process B, Run #1, violet diamonds.

Tables (2)

Tables Icon

Table 1. Comparison of the Results Provided by Three Different Methods

Tables Icon

Table 2. Main Characteristics of the Deposition Runs

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ n ( λ ) = A 0 + A 1 λ 2 + A 2 λ 4 κ ( λ ) = B 0 exp ( B 1 λ ) exp ( B 2 λ ) .
DF ( X , d ) = α 1 N n = 1 N [ T th ( X , d , λ n ) T exp ( λ n ) ] 2 + β 1 N n = 1 N [ R th ( X , d , λ n ) R exp ( λ n ) ] 2 ,
n 1 ( λ n ) v t k = k λ n 4 ,
p ( λ n ) = 4 n 1 ( λ n ) λ n v .
D ( λ n , λ 0 ) = n 1 ( λ n ) n 1 ( λ 0 ) = λ n λ 0 × p ( λ n ) p ( λ 0 ) ,
T min ( λ 0 , t 0 ) = 4 n s ( λ 0 ) n 1 2 ( λ 0 ) [ n s 2 ( λ 0 ) + n 1 2 ( λ 0 ) ] [ 1 + n 1 2 ( λ 0 ) ] ,
s max ( λ n ) = 2 n s ( λ n ) 1 + n s 2 ( λ n ) κ 1 ( λ n ) × [ 1 + n s ( λ n ) ] [ n 1 2 ( λ n ) + n s ( λ n ) ] n 1 ( λ n ) [ 1 + n s 2 ( λ n ) ] 2 π λ n v .
κ 1 ( λ n ) = 1 π s max ( λ n ) p ( λ n ) × n 1 2 ( λ n ) [ 1 + n s 2 ( λ n ) ] 2 n s ( λ n ) [ 1 + n s ( λ n ) ] [ n 1 2 ( λ n ) + n s ( λ n ) ] .
SDF = 1 N n = 1 N { T th [ d , n 1 ( λ n ) , κ 1 ( λ n ) ] T exp ( λ n ) } 2 .
TDF ( λ n ) = 1 K k = 1 K { T th [ v t k , n 1 ( λ n ) , κ ¯ 1 ( λ n ) ] T exp ( λ n , t k ) } 2 .

Metrics