Abstract

Biases induced by land perturbations in satellite-derived water-leaving radiance are theoretically estimated for typical observation conditions in a coastal area of the northern Adriatic Sea hosting the Aqua Alta Oceanographic Tower (AAOT) validation site. Two different correction procedures are considered: not deriving (AC-1) or alternatively deriving (AC-2) the atmospheric properties from the remote sensing data. In both cases, biases due to adjacency effects largely increase by approaching the coast and with the satellite viewing angle. Conversely, the seasonal and spectral dependence of biases significantly differ between AC-1 and AC-2 schemes. For AC-1 schemes average biases are within ±5% throughout the transect at yellow–green wavelengths, but at the coast they can reach 21% and 34% at 412 and 670 nm, respectively, and exceed 100% at 865 nm. For AC-2 schemes, adjacency effects at those wavelengths from which atmospheric properties are inferred add significant perturbations. For the specific case of a correction scheme determining the atmospheric properties from the near-infrared region and by adopting a power-law spectral extrapolation of adjacency perturbations on the derived atmospheric radiance, average biases become all negative with values up to 60% and 74% at 412 and 670 nm at the coast, respectively. The seasonal trend of estimated biases at the AAOT is consistent with intra-annual variation of biases from match-ups between in situ and satellite products derived with SeaDAS from SeaWiFS and MODIS data. Nevertheless, estimated biases at blue wavelengths exceed systematic differences determined from match-up analysis. This may be explained by uncertainties and approximations in the simulation procedure, and by mechanisms of compensation introduced by the turbid water correction algorithm implemented in SeaDAS.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simulation and analysis of adjacency effects in coastal waters: a case study

Barbara Bulgarelli, Viatcheslav Kiselev, and Giuseppe Zibordi
Appl. Opt. 53(8) 1523-1545 (2014)

Field observations of the relation between satellite and sea radiances in coastal waters

Eyvind Aas and Kai Sørensen
Appl. Opt. 34(24) 5422-5432 (1995)

Adjacency effects on water surfaces: primary scattering approximation and sensitivity study

Richard Santer and Catherine Schmechtig
Appl. Opt. 39(3) 361-375 (2000)

References

  • View by:
  • |
  • |
  • |

  1. Global Climate Observing System, “Systematic observation requirements for satellite-based data products for climate 2011 Update GCOS-154,” (World Meteorological Organization, 2011).
  2. J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
    [Crossref]
  3. V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
    [Crossref]
  4. H. W. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [Crossref]
  5. D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
    [Crossref]
  6. J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18, 2852–2860 (1979).
    [Crossref]
  7. P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
    [Crossref]
  8. A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28, 1873–1890 (2007).
    [Crossref]
  9. B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53, 1523–1545 (2014).
    [Crossref]
  10. G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
    [Crossref]
  11. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
    [Crossref]
  12. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
    [Crossref]
  13. C. D. Mobley and C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  14. J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
    [Crossref]
  15. J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.
  16. J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.
  17. E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
    [Crossref]
  18. B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
    [Crossref]
  19. V. B. Kisselev, L. Roberti, and G. Perona, “Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications,” Appl. Opt. 34, 8460–8471 (1995).
    [Crossref]
  20. B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
    [Crossref]
  21. B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004).
    [Crossref]
  22. B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
    [Crossref]
  23. B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003).
    [Crossref]
  24. B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).
  25. G. Zibordi and B. Bulgarelli, “Effects of cosine error in irradiance measurements from field ocean color radiometers,” Appl. Opt. 46, 5529–5538 (2007).
    [Crossref]
  26. V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).
    [Crossref]
  27. G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
    [Crossref]
  28. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
    [Crossref]
  29. G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
    [Crossref]
  30. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
    [Crossref]
  31. R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. Kokaly, and S. J. Sutley, USGS digital spectral library splib06a: U.S. Geological Survey, 2007, http://speclab.cr.usgs.gov/spectral.lib06 , accessed 21Apr.2016.
  32. C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
    [Crossref]
  33. G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
    [Crossref]
  34. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18, 7521–7527 (2010).
    [Crossref]

2015 (1)

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

2014 (1)

2013 (1)

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

2012 (2)

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
[Crossref]

2010 (2)

2009 (3)

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

2008 (1)

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

2007 (3)

2005 (1)

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

2004 (2)

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004).
[Crossref]

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).
[Crossref]

2003 (3)

B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003).
[Crossref]

B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).

B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
[Crossref]

2001 (1)

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
[Crossref]

2000 (1)

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[Crossref]

1999 (2)

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[Crossref]

B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
[Crossref]

1997 (1)

1995 (1)

1994 (1)

1983 (1)

P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
[Crossref]

1979 (1)

Ahmad, Z.

Antoine, D.

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[Crossref]

Bailey, S. W.

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Berthon, J.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
[Crossref]

J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.

Berthon, J. F.

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

Bruegge, C. J.

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[Crossref]

Bulgarelli, B.

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53, 1523–1545 (2014).
[Crossref]

G. Zibordi and B. Bulgarelli, “Effects of cosine error in irradiance measurements from field ocean color radiometers,” Appl. Opt. 46, 5529–5538 (2007).
[Crossref]

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).
[Crossref]

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004).
[Crossref]

B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
[Crossref]

B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003).
[Crossref]

B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).

B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
[Crossref]

Carder, K. L.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
[Crossref]

Chen, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

D’Alimonte, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

Deschamps, P. Y.

P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
[Crossref]

Dickinson, R.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Dickinson, R. E.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Doyle, J.

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004).
[Crossref]

Doyle, J. P.

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

Feng, H.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Franz, B. A.

Fraser, R. S.

Fu, R.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Giles, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Gobron, N.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Gong, P.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Gordon, H. R.

Gordon, H. W.

Govaerts, Y.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Grossi, S.

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Heege, T.

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

Herman, M.

P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
[Crossref]

Holben, B.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Holben, B. N.

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Hu, C.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
[Crossref]

Kaitala, S.

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

King, M. D.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

Kiselev, V.

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53, 1523–1545 (2014).
[Crossref]

Kisselev, V.

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).
[Crossref]

B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
[Crossref]

Kisselev, V. B.

Kwiatkowska, E. J.

Lattanzio, A.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Liang, S.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Martonchik, J. V.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[Crossref]

McClain, C. R.

Mélin, F.

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).

J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.

Mobley, C. D.

C. D. Mobley and C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. D. Mobley and C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Moody, E. G.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

Morel, A.

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[Crossref]

Muller-Karger, F. E.

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
[Crossref]

Otterman, J.

Perona, G.

Pinty, B.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Platnick, S.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

Roberti, L.

Schaaf, C. B.

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

Schuster, G.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Sei, A.

A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28, 1873–1890 (2007).
[Crossref]

Shettle, E. P.

Shi, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Slutsker, I.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Strahler, A. H.

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[Crossref]

Taberner, M.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Tanre, D.

P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
[Crossref]

Targa, C.

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

van der Linde, D.

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

Vandemark, D.

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

Verstraete, M. M.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Wang, M.

Werdell, J.

Werdell, P. J.

Widlowski, J.-L.

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

Xu, B.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Yang, H.

Yang, J.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Zhang, M.

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Zibordi, G.

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53, 1523–1545 (2014).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
[Crossref]

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

G. Zibordi and B. Bulgarelli, “Effects of cosine error in irradiance measurements from field ocean color radiometers,” Appl. Opt. 46, 5529–5538 (2007).
[Crossref]

B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003).
[Crossref]

B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
[Crossref]

J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

Appl. Opt. (10)

H. W. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[Crossref]

J. Otterman and R. S. Fraser, “Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith,” Appl. Opt. 18, 2852–2860 (1979).
[Crossref]

B. Bulgarelli, V. Kiselev, and G. Zibordi, “Simulation and analysis of adjacency effects in coastal waters: a case study,” Appl. Opt. 53, 1523–1545 (2014).
[Crossref]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
[Crossref]

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal and open oceans,” Appl. Opt. 49, 5545–5560 (2010).
[Crossref]

V. B. Kisselev, L. Roberti, and G. Perona, “Finite-element algorithm for radiative transfer in vertically inhomogeneous media: numerical scheme and applications,” Appl. Opt. 34, 8460–8471 (1995).
[Crossref]

B. Bulgarelli, V. Kisselev, and L. Roberti, “Radiative transfer in the atmosphere-ocean system: the finite-element method,” Appl. Opt. 38, 1530–1542 (1999).
[Crossref]

B. Bulgarelli, G. Zibordi, and J. Berthon, “Measured and modeled radiometric quantities in coastal waters: toward a closure,” Appl. Opt. 42, 5365–5381 (2003).
[Crossref]

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997).
[Crossref]

G. Zibordi and B. Bulgarelli, “Effects of cosine error in irradiance measurements from field ocean color radiometers,” Appl. Opt. 46, 5529–5538 (2007).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

G. Zibordi, F. Mélin, and J. F. Berthon, “Trends in the bias of primary satellite ocean-color products at a coastal site,” IEEE Geosci. Remote Sens. Lett. 9, 1056–1060 (2012).
[Crossref]

Int. J. Remote Sens. (3)

B. Bulgarelli and G. Zibordi, “Remote sensing of ocean colour: accuracy assessment of an approximate atmospheric correction method,” Int. J. Remote Sens. 24, 491–509 (2003).
[Crossref]

A. Sei, “Analysis of adjacency effects for two Lambertian half-spaces,” Int. J. Remote Sens. 28, 1873–1890 (2007).
[Crossref]

D. Antoine and A. Morel, “A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones,” Int. J. Remote Sens. 20, 1875–1916 (1999).
[Crossref]

J. Appl. Meteor. Climatol. (1)

E. G. Moody, M. D. King, C. B. Schaaf, and S. Platnick, “MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages,” J. Appl. Meteor. Climatol. 47, 2879–2894 (2008).
[Crossref]

J. Atmos. Ocean. Technol. (1)

G. Zibordi, F. Mélin, J. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, and G. Schuster, “AERONET-OC: a network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26, 1634–1651 (2009).
[Crossref]

J. Atmos. Sci. (1)

B. Pinty, A. Lattanzio, J. V. Martonchik, M. M. Verstraete, N. Gobron, M. Taberner, J.-L. Widlowski, R. E. Dickinson, and Y. Govaerts, “Coupling diffuse sky radiation and surface albedo,” J. Atmos. Sci. 62, 2580–2591 (2005).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

B. Bulgarelli and J. Doyle, “Comparison between numerical models for radiative transfer simulation in the atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 86, 315–334 (2004).
[Crossref]

V. Kisselev and B. Bulgarelli, “Reflection of light from a rough water surface in numerical methods for solving the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 85, 419–435 (2004).
[Crossref]

Nat. Clim. Change (1)

J. Yang, P. Gong, R. Fu, M. Zhang, J. Chen, S. Liang, B. Xu, J. Shi, and R. Dickinson, “The role of satellite remote sensing in climate change studies,” Nat. Clim. Change 3, 875–883 (2013).
[Crossref]

Oceanologia (1)

B. Bulgarelli and F. Mélin, “SeaWiFS-derived products in the Baltic Sea: performance analysis of a simple atmospheric correction algorithm,” Oceanologia 45, 655–677 (2003).

Opt. Express (1)

Remote Sens. Environ. (6)

G. Zibordi, J. F. Berthon, F. Mélin, D. D’Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113, 2574–2591 (2009).
[Crossref]

C. Hu, K. L. Carder, and F. E. Muller-Karger, “How precise are SeaWiFS ocean color estimates? Implications of digitization-noise errors,” Remote Sens. Environ. 76, 239–249 (2001).
[Crossref]

G. Zibordi, F. Mélin, and J. F. Berthon, “Intra-annual variations of biases in remote sensing primary ocean color products at a coastal site,” Remote Sens. Environ. 124, 627–636 (2012).
[Crossref]

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[Crossref]

V. Kiselev, B. Bulgarelli, and T. Heege, “Sensor independent adjacency correction algorithm for coastal and inland water systems,” Remote Sens. Environ. 157, 85–95 (2015).
[Crossref]

P. Y. Deschamps, M. Herman, and D. Tanre, “Definitions of atmospheric radiance and transmittances in remote sensing,” Remote Sens. Environ. 13, 89–92 (1983).
[Crossref]

Remote Sens. Rev. (1)

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler, “A review of reflectance nomenclature used in remote sensing,” Remote Sens. Rev. 19, 9–20 (2000).
[Crossref]

Other (5)

J. F. Berthon, G. Zibordi, J. P. Doyle, S. Grossi, D. van der Linde, and C. Targa, “Coastal atmosphere and sea time series (CoASTS), part 2: date analysis,” (2002), pp. 1–25.

J. Berthon, F. Mélin, and G. Zibordi, “Ocean colour remote sensing of the optically complex European seas,” in Remote Sensing of the European Seas (Springer, 2008), pp. 35–52.

C. D. Mobley and C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Global Climate Observing System, “Systematic observation requirements for satellite-based data products for climate 2011 Update GCOS-154,” (World Meteorological Organization, 2011).

R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. Kokaly, and S. J. Sutley, USGS digital spectral library splib06a: U.S. Geological Survey, 2007, http://speclab.cr.usgs.gov/spectral.lib06 , accessed 21Apr.2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1.
Fig. 1.

Land/sea mask utilized in the simulations: land elements are indicated in dark gray, while sea elements are in light gray. Each element is 2 × 2    km wide. The black line represents the transect (34 km long), the black circle the AAOT (45.31°N, 12.51°E).

Fig. 2.
Fig. 2.

Spectral values of in situ R ¯ rs adopted in the simulations: symbols represent different annual and intra-annual periods. Error bars indicate the standard deviation ± σ R rs .

Fig. 3.
Fig. 3.

Spectral values of climatological ρ ¯ l adopted in the simulations: symbols represent different annual and intra-annual periods. Error bars indicate standard deviations ± σ ρ l .

Fig. 4.
Fig. 4.

Annual average biases ψ ¯ t L w at representative wavelengths for an AC-1 scheme. Here and in the following figures, results are presented as a function of the distance along the study transect and error bars indicate the standard deviation ± σ ψ ¯ (black, not visible in the present plots) and the sample variance (gray). L w is assumed constant all along the transect. The horizontal dotted lines indicate ± 5 % , while the vertical dashed line identifies the position of the AAOT site.

Fig. 5.
Fig. 5.

Intra-annual values of ψ ¯ t L w at representative wavelengths for an AC-1 scheme and for a sensor viewing angle θ v = 5 ° . Symbols are as in Fig. 3. Gray error bars represent the sample variance, while darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted lines indicate ± 5 % , while the vertical dashed line identifies the position of the AAOT site.

Fig. 6.
Fig. 6.

As in Fig. 5, but for θ v = 50 ° .

Fig. 7.
Fig. 7.

Annual average biases ψ ¯ t L w , determined at 765 and 865 nm for the considered AC-1 scheme, assuming an exponential increase toward the coast up to threefold the 0.9 quantile of satellite-derived L w at the AAOT. Gray error bars represent the sample variance, while darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted line indicates + 5 % .

Fig. 8.
Fig. 8.

Annual average values of ψ ¯ t L w at representative wavelengths for the considered AC-2 scheme. Gray error bars represent the sample variance, darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted lines indicate ± 5 % , while the vertical dashed line identifies the position of the AAOT site.

Fig. 9.
Fig. 9.

Annual average values of the two sources of land perturbation in ψ ¯ t L w [see Eq. (13)] at representative wavelengths for the considered AC-2 scheme. Filled circles refer to ψ ¯ t L w [ L adj ( λ V ) ] , while empty circles refer to ψ ¯ t L w [ L adj ( λ N ) ] . Gray error bars represent the sample variance, darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted lines indicate ± 5 % , while the vertical dashed line identifies the position of the AAOT site.

Fig. 10.
Fig. 10.

Intra-annual values of ψ ¯ t L w at representative wavelengths for the considered AC-2 scheme and for θ v = 5 ° . Symbols are as in Fig. 3. Gray error bars represent the sample variance, darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted lines indicate ± 5 % , while the vertical dashed line identifies the position of the AAOT site.

Fig. 11.
Fig. 11.

As in Fig. 10 but for θ v = 50 ° .

Fig. 12.
Fig. 12.

Annual average values of ψ ¯ t L w at representative wavelengths for the considered AC-2 scheme by assuming R ( ρ l ) = 0.75 (empty circles), 0.83 (stars), 0.95 (filled circles). Gray error bars represent the sample variance, darker error bars represent the standard deviation ± σ ψ ¯ . The horizontal dotted lines indicate ± 5 % , while the vertical dotted line identifies the position of the AAOT site.

Fig. 13.
Fig. 13.

Values of annual average ψ ¯ L A at 865 nm for the considered AC-2 scheme. Gray error bars represent the sample variance, darker error bars (not visible) represent the standard deviation ± σ ψ ¯ . The vertical dotted line identifies the position of the AAOT site.

Fig. 14.
Fig. 14.

Plot of ψ ¯ L A ( λ ) / ψ ¯ L A ( 865 ) at the AAOT for the considered AC-2 scheme and for different values of λ as a function of R ( ρ l ) .

Fig. 15.
Fig. 15.

Plot of R ( L adj ) versus R ( ρ l ) · R ( L path ) for all test cases characterized by ν = 1.7 and θ 0 < 65 ° , and assuming R ( ρ l ) = 0.75 , 0.83, and 0.95. rmsd is the root mean square deviation, ψ and | ψ | represent the average bias and the average absolute bias of data all in percent.

Fig. 16.
Fig. 16.

Spectral plot of ψ ¯ L A ( λ ) at the AAOT for the considered AC-2 scheme. Empty circles, stars, and filled circles refer to simulated data for R ( ρ l ) = 0.75 , 0.83, and 0.95, respectively. Crosses represent the corresponding values obtained with Eq. (21).

Fig. 17.
Fig. 17.

Annual average spectral values of (upper panel) ψ ¯ t L w and (lower panel) | d | ¯ [ Wm 2 μm 1 sr 1 ] at the AAOT for the considered AC-2 scheme. Black bars represent the standard deviation ± σ ψ ¯ , while gray bars are the sample variance. The horizontal dotted lines in the upper panel indicate ± 5 % .

Fig. 18.
Fig. 18.

Intra-annual spectral values of ψ ¯ t L w at the AAOT for the considered AC-2 scheme, for θ v = 5 ° (upper panel) and 50° (lower panel). Bars represent the standard deviation. Symbols are as in Fig. 3. The horizontal dotted lines indicate ± 5 % .

Fig. 19.
Fig. 19.

Normalized frequency histogram distribution of ζ w = ( t L w / L tot ) 100 derived with SeaDAS in correspondence of the AAOT at 765 (upper panel) and 865 nm (lower panel) for clear water conditions verified with in situ data. The total number of cases is N tot = 163 . The black bar corresponds to cases for which ζ w = 0 % ( N ζ w = 0 = 24 at 865 nm, with 23 corresponding nihil values at 765 nm), the gray bars correspond to cases for which ζ w > 0 % .

Fig. 20.
Fig. 20.

Spectral values of ψ ¯ L w at the AAOT for the considered AC-2 scheme assuming an exact knowledge of L w in the NIR (empty stars), and assuming an overestimate of t L w equal to 0.3% and 0.2% of L tot at 765 and 865 nm, respectively (filled stars). Error bars represent the standard deviation ± σ ψ ¯ (black) and the sample variance (gray). The horizontal dotted lines indicate ± 5 % .

Fig. 21.
Fig. 21.

Spectral values of Δ ψ ¯ L w and Δ d ¯ [ Wm 2 μm 1 sr 1 ] at the AAOT for the considered AC-2 scheme. In the upper panels differences are between intra-annual and yearly average simulated data (with symbols as in Fig. 3). Error bars represent ± σ . In the lower panels differences are between results for θ 0 = 25 ° , 45°, 65° and average simulated data.

Tables (1)

Tables Icon

Table 1 List of Most Used Symbols

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

L adj = { ρ l π ( 1 ρ l S ) R rs 1 ρ sea S } · C W ,
L t = L path + t L w ,
ψ x = Δ x x = x ^ x x .
L t = L path + t L w + L adj ,
t L ^ w L t L path = t L w + L adj ,
ψ t L w = L adj t L w .
Δ L path ( λ N ) L ^ path ( λ N ) L path ( λ N ) = L adj ( λ N ) ,
t L ^ w ( λ V ) L t ( λ V ) L ^ path ( λ V ) = t L w ( λ V ) + L a d j ( λ V ) Δ L path ( λ V )
ψ t L w ( λ V ) = L adj ( λ V ) t L w ( λ V ) Δ L path ( λ V ) t L w ( λ V ) .
L path ( λ ) = L R ( λ ) + L A ( λ ) ,
ψ t L w ( λ V ) = L adj ( λ V ) t L w ( λ V ) Δ L A ( λ V ) t L w ( λ V ) ,
Δ L A ( λ V ) = f ( L A ( λ N ) + L adj ( λ N ) ) f ( L A ( λ N ) ) ,
ψ t L w ( λ V ) = ψ t L w [ L adj ( λ V ) ] + ψ t L w [ L adj ( λ N ) ] .
L A ( λ V ) ϵ β · L A ( 865 ) ,
ψ L A L ^ A L A 1 ϵ ^ β · L ^ A ( 865 ) ϵ β · L A ( 865 ) 1 ,
ϵ ^ L A ( 765 ) + L adj ( 765 ) L A ( 865 ) + L adj ( 865 ) .
ψ L A ( λ ) / ψ L A ( 865 ) [ 1 + β · ( R ( L adj ) ϵ 1 ) ] .
L adj ( λ N ) ρ l π · C ( λ N ) .
ψ L A ( λ ) / ψ L A ( 865 ) [ 1 + β · ( R ( ρ l ) · R ( C ) ϵ 1 ) ] .
R ( L adj ) R ( ρ l ) · R ( L path ) .
ψ L A ( λ ) ψ L A ( 865 ) [ 1 + β · ( R ( ρ l ) · R ( L path ) ϵ 1 ) ] [ 1 + β · ( R ( ρ l ) R ( L A / L path ) 1 ) ] .
Δ L A ( λ V ) L ^ A ( λ V ) L A ( λ V ) ϵ ^ β L ^ A ( 865 ) ϵ β L A ( 865 ) ,
Δ L A ( λ V ) [ L A ( 765 ) + L adj ( 765 ) L A ( 865 ) + L adj ( 865 ) ] β [ L A ( 865 ) + L adj ( 865 ) ] ϵ β L A ( 865 ) = [ L A ( 765 ) + L adj ( 765 ) ] β [ L A ( 865 ) + L adj ( 865 ) ] 1 β ϵ β L A ( 865 ) .
Δ L A ( λ V ) [ L A ( 765 ) β + β L A ( 765 ) β 1 L adj ( 765 ) ] [ L A ( 865 ) 1 β + ( 1 β ) L A ( 865 ) β L adj ( 865 ) ] ϵ β L A ( 865 ) .
Δ L A ( λ V ) ( 1 β ) ϵ β L adj ( 865 ) + β ϵ β 1 L adj ( 765 ) ,
ψ L A ( λ V ) ψ L A ( 865 ) [ 1 + β · ( R ( L adj ) ϵ 1 ) ] ,

Metrics