Abstract

A fiber inline Mach–Zehnder interferometer (MZI) based on a microcavity with two symmetric openings in single-multi-single mode fiber (SMSF) structure is proposed. By using the finite difference beam propagation method (FD-BPM), the interference spectrum simulation result shows that the MZI can still have high-quality interference even if the microcavity deviates along the radial direction for 3 μm. Therefore, it allows a larger fabrication tolerance and tremendously decreases the fabrication difficulty. Then a microcavity with two symmetric openings in SMSF was fabricated by using femtosecond laser-induced water breakdown. The insertion loss of the microcavity immerged in water is only 8  dB, and the MZ interference peak contrast in the transmission spectrum reaches more than 30 dB. The MZI based on the microcavity in SMSF can be used as a practical liquid refractive index sensor as its high-quality interference spectrum, ultrahigh sensitivity (9756.75 nm/RIU), high refractive index resolution (2×105  RIU), good linearity (99.93%), and low-temperature crosstalk (0.04 nm/°C).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond-induced spiral micro-structured SMS fiber structure for refractive index measurement

F. Liu, H. F. Lin, Y. Liu, A. Zhou, and Y. T. Dai
Opt. Express 26(13) 17388-17396 (2018)

All-fiber Mach-Zehnder interferometers for sensing applications

Lecheng Li, Li Xia, Zhenhai Xie, and Deming Liu
Opt. Express 20(10) 11109-11120 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription