Abstract

Recent results of processing fused silica using a high-power Q-switched CO2 laser source with a maximum output power of 200 W are presented. Compared to the processing with continuous wave laser radiation, the main advantage of pulsed laser radiation is the influence of the light–matter interaction with high laser peak power at small average laser power. An application for the approach presented in this paper is the flexible manufacturing and form correction of optics. This laser-based process is nearly independent of the surface geometry and can even be enhanced by laser polishing and expanded to other glass materials. Hence, the high-power Q-switched CO2 laser source is used to ablate glass material with an ablation rate up to 2.35  mm3/s and also for ablating glass material locally in a vertical dimension down to 3 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localized CO2 laser damage repair of fused silica optics

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall
Appl. Opt. 45(21) 5358-5367 (2006)

Analytical model for CO2 laser ablation of fused quartz

Krzysztof M. Nowak, Howard J. Baker, and Denis R. Hall
Appl. Opt. 54(29) 8653-8663 (2015)

In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation

Daniel Grossmann, Martin Reininghaus, Christian Kalupka, Michael Jenne, and Malte Kumkar
Opt. Express 25(23) 28478-28488 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
    [Crossref]
  2. M. Sun, U. Eppelt, W. Schulz, and J. Zhu, “Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates,” Opt. Mater. Express 3, 1716–1726 (2013).
    [Crossref]
  3. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
    [Crossref]
  4. B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
    [Crossref]
  5. K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
    [Crossref]
  6. K. M. Nowak, H. J. Baker, and D. R. Hall, “Analytical model for CO2 laser ablation of fused quartz,” Appl. Opt. 54, 8653–8663 (2015).
    [Crossref]
  7. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
    [Crossref]
  8. E. Mendez, K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45, 162–171 (2006).
    [Crossref]
  9. G. Staupendahl and P. Gerling, “Laser material processing of glasses with CO2 lasers,” Proc. SPIE 3097, 670–676 (1997).
    [Crossref]
  10. J. Xie and Q. Pan, “Acusto-optically Q-switched CO2 laser,” in Laser Systems for Applications, K. Jakubczak, ed. (2011), pp. 17–38.
  11. G. Staupendahl, “A novel Q-switched CO2 laser and its applications,” Laser Tech. J. 11, 22–25 (2014).
    [Crossref]
  12. S. Lee, “Q-switched CO2 lasers deliver power,” in Industrial Laser Solutions for Manufacturing (2002), Vol. 17.
  13. S. Heidrich, Abtragprozesse und Prozesskette zur laserbasierten Fertigung optischer Elemente aus Quarzglas, 1st ed. (Shaker Verlag, 2014).
  14. S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

2016 (2)

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

2015 (1)

2014 (1)

G. Staupendahl, “A novel Q-switched CO2 laser and its applications,” Laser Tech. J. 11, 22–25 (2014).
[Crossref]

2013 (1)

2006 (2)

2005 (1)

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

2004 (1)

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

1997 (1)

G. Staupendahl and P. Gerling, “Laser material processing of glasses with CO2 lasers,” Proc. SPIE 3097, 670–676 (1997).
[Crossref]

Ardron, M.

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

Baker, H. J.

Cheng, C. F.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Chowdhury, I. H.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Eppelt, U.

Feng, D. H.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Gerling, P.

G. Staupendahl and P. Gerling, “Laser material processing of glasses with CO2 lasers,” Proc. SPIE 3097, 670–676 (1997).
[Crossref]

Gräf, S.

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

Hall, D. R.

Hand, D. P.

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

Heidrich, S.

S. Heidrich, Abtragprozesse und Prozesskette zur laserbasierten Fertigung optischer Elemente aus Quarzglas, 1st ed. (Shaker Verlag, 2014).

S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

Jia, T. Q.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Lee, S.

S. Lee, “Q-switched CO2 lasers deliver power,” in Industrial Laser Solutions for Manufacturing (2002), Vol. 17.

Li, R. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Li, X. X.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Mendez, E.

Meyer, B. J.

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

Müller, F. A.

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

Nowak, K. M.

Pan, Q.

J. Xie and Q. Pan, “Acusto-optically Q-switched CO2 laser,” in Laser Systems for Applications, K. Jakubczak, ed. (2011), pp. 17–38.

Poprawe, R.

S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

Schulz, W.

Staupendahl, G.

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

G. Staupendahl, “A novel Q-switched CO2 laser and its applications,” Laser Tech. J. 11, 22–25 (2014).
[Crossref]

G. Staupendahl and P. Gerling, “Laser material processing of glasses with CO2 lasers,” Proc. SPIE 3097, 670–676 (1997).
[Crossref]

Sun, H. Y.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Sun, M.

Uluz, E.

S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

Villarreal, F. J.

Wang, H. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Weiner, A. M.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Weingarten, C.

S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

Weston, N. J.

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

Wlodarczyk, K. L.

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

Xie, J.

J. Xie and Q. Pan, “Acusto-optically Q-switched CO2 laser,” in Laser Systems for Applications, K. Jakubczak, ed. (2011), pp. 17–38.

Xu, N. S.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Xu, X.

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

Xu, Z. Z.

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

Zhu, J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

I. H. Chowdhury, X. Xu, and A. M. Weiner, “Ultrafast double-pulse ablation of fused silica,” Appl. Phys. Lett. 86, 151110 (2005).
[Crossref]

J. Appl. Phys. (1)

T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95, 5166–5171 (2004).
[Crossref]

J. Laser Appl. (1)

B. J. Meyer, G. Staupendahl, F. A. Müller, and S. Gräf, “Sensitive ablation of brittle materials with pulsed CO2 laser radiation,” J. Laser Appl. 28, 012002 (2016).
[Crossref]

Laser Tech. J. (1)

G. Staupendahl, “A novel Q-switched CO2 laser and its applications,” Laser Tech. J. 11, 22–25 (2014).
[Crossref]

Opt. Mater. Express (2)

K. L. Wlodarczyk, N. J. Weston, M. Ardron, and D. P. Hand, “Direct CO2 laser-based generation of holographic structures on the surface of glass,” Opt. Mater. Express 24, 1447–1462 (2016).
[Crossref]

M. Sun, U. Eppelt, W. Schulz, and J. Zhu, “Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates,” Opt. Mater. Express 3, 1716–1726 (2013).
[Crossref]

Proc. SPIE (1)

G. Staupendahl and P. Gerling, “Laser material processing of glasses with CO2 lasers,” Proc. SPIE 3097, 670–676 (1997).
[Crossref]

Other (4)

J. Xie and Q. Pan, “Acusto-optically Q-switched CO2 laser,” in Laser Systems for Applications, K. Jakubczak, ed. (2011), pp. 17–38.

S. Lee, “Q-switched CO2 lasers deliver power,” in Industrial Laser Solutions for Manufacturing (2002), Vol. 17.

S. Heidrich, Abtragprozesse und Prozesskette zur laserbasierten Fertigung optischer Elemente aus Quarzglas, 1st ed. (Shaker Verlag, 2014).

S. Heidrich, C. Weingarten, E. Uluz, and R. Poprawe, “Glass processing with high power Q-switch CO2 laser radiation,” in International Congress Lasers in Manufacturing (LiM), Munich, Germany, 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Laser-based process chain for the manufacturing of optics [13].
Fig. 2.
Fig. 2. Photograph of the experimental setup.
Fig. 3.
Fig. 3. Schematic drawing of the pulse form generating of Q -switched pulses (Mode 1) and modulated pulses (Mode 2).
Fig. 4.
Fig. 4. Scheme of the process parameters and the scanning strategy used for glass ablation.
Fig. 5.
Fig. 5. White-light interferometry measurement of an ablated field for measuring ablation depth.
Fig. 6.
Fig. 6. Ablation depth per exposure layer as a function of pulse energy density for f rep = 150    kHz and 10    W < P avg < 140    W .
Fig. 7.
Fig. 7. Ablation depth per exposure layer as a function of pulse energy density for f rep = 150    kHz for 10    W < P avg < 140    W and f rep = 20    kHz for 10    W < P avg < 90    W .
Fig. 8.
Fig. 8. Contour plot of the ablation rate V ˙ dependency on the track pitch d y and track distance d x for P avg = 115    W and f rep = 150    kHz .
Fig. 9.
Fig. 9. CAD image of the honeycomb structure.
Fig. 10.
Fig. 10. Section of the laser tool path with scan vectors (green) and jump vectors (purple) for a honeycomb structure for a layer in the middle of the workpiece and a magnification.
Fig. 11.
Fig. 11. Photograph of a laser-ablated honeycomb structure on fused silica.
Fig. 12.
Fig. 12. White-light interferometry images of ablated test fields processed with different pulse durations by laser beam figuring.
Fig. 13.
Fig. 13. Dependence of the pulse duration on the depth z ab with P avg = 50    W .
Fig. 14.
Fig. 14. False color image taken by a white-light interferometry with varying pulse durations (laser beam figuring).
Fig. 15.
Fig. 15. Photograph of locally ablated glass material (left) fused silica with different ablated layers n and different dimensions, with processing time 3    min (right) polished fused silica with laser radiation.

Tables (4)

Tables Icon

Table 1. Specifications of the High-Power Q -Switched CO 2 Laser Source

Tables Icon

Table 2. Parameters Used for the Experiments of High-Speed Laser Ablation with a Focus Distance of 100 mm and d s 300    μm ( Q -Switched Pulses)

Tables Icon

Table 3. Parameters Used for the Experiments of High-Precision Laser Ablation with a Focus Distance of 200 mm and d s 500    μm (Modulated Pulses)

Tables Icon

Table 4. Used Parameters for the Maximum Ablation Rate V ˙ max

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d x = v s f rep .
V ˙ = z ab · v s · d y n .
H = P avg π · ( d s 2 ) 2 · f rep .
t Layer = A d y · v s ,

Metrics