Abstract

In this paper, we present the design and analysis of a novel hybrid porous core octagonal lattice photonic crystal fiber for terahertz (THz) wave guidance. The numerical analysis is performed using a full-vector finite element method (FEM) that shows that 80% of bulk absorption material loss of cyclic olefin copolymer (COC), commercially known as TOPAS can be reduced at a core diameter of 350 μm. The obtained effective material loss (EML) is as low as 0.04  cm1 at an operating frequency of 1 THz with a core porosity of 81%. Moreover, the proposed photonic crystal fiber also exhibits comparatively higher core power fraction, lower confinement loss, higher effective mode area, and an ultra-flattened dispersion profile with single mode propagation. This fiber can be readily fabricated using capillary stacking and sol-gel techniques, and it can be used for broadband terahertz applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime

Md. Shariful Islam, Mohammad Faisal, and S. M. Abdur Razzak
J. Opt. Soc. Am. B 34(8) 1747-1754 (2017)

Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core

Md. Rabiul Hasan, Md. Ariful Islam, M. S. Anower, and S. M. A. Razzak
Appl. Opt. 55(30) 8441-8447 (2016)

Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications

Md. Saiful Islam, Jakeya Sultana, Alex Dinovitser, Mohammad Faisal, Mohammad Rakibul Islam, Brian W.-H. Ng, and Derek Abbott
Appl. Opt. 57(4) 666-672 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription