Abstract

We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K2ZnCl4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50  fs FWHM durations and 2.42±0.04  mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studying shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Optical limiting properties and z-scan measurements of carbon disulfide at 2.05  μm wavelength

Lars Grønmark Holmen and Magnus W. Haakestad
J. Opt. Soc. Am. B 33(8) 1655-1660 (2016)

Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses

Yurii E. Geints, Alexander A. Zemlyanov, Andrey M. Kabanov, Elena E. Bykova, Dmitrii V. Apeksimov, Oleg A. Bukin, Ekaterina B. Sokolova, Sergey S. Golik, and Aleksey A. Ilyin
Appl. Opt. 50(27) 5291-5298 (2011)

Multicolored sideband generation based on cascaded four-wave mixing with the assistance of spectral broadening in multiple thin plates

Peng Wang, Jun Liu, Fangjia Li, Xiong Shen, and Ruxin Li
Photon. Res. 3(5) 210-213 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. D. Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
    [Crossref]
  3. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [Crossref]
  4. M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800  nm in photonic crystal fibers,” J. Opt. Soc. Am. B 24, 1410–1415 (2007).
    [Crossref]
  5. A. Husakou and J. Herrmann, “Soliton-effect pulse compression in the single-cycle regime in broadband dielectric-coated metallic hollow waveguides,” Opt. Express 17, 17636–17644 (2009).
    [Crossref]
  6. A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
    [Crossref]
  7. N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
    [Crossref]
  8. J. Lee, “Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications,” Electron. Lett. 42, 549–550 (2006).
    [Crossref]
  9. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [Crossref]
  10. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
    [Crossref]
  11. F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
    [Crossref]
  12. J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.
  13. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  14. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [Crossref]
  15. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref]
  16. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  17. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18, 6230–6240 (2010).
    [Crossref]
  18. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
    [Crossref]
  19. T. Jimbo, V. L. Caplan, Q. X. Li, Q. Z. Wang, P. P. Ho, and R. R. Alfano, “Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations,” Opt. Lett. 12, 477–479 (1987).
    [Crossref]
  20. J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
    [Crossref]
  21. P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
    [Crossref]
  22. A. N. Tcypkin, S. E. Putilin, M. V. Melnik, E. A. Makarov, V. G. Bespalov, and S. A. Kozlov, “Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet,” Appl. Opt. 55, 8390–8394 (2016).
    [Crossref]
  23. J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
    [Crossref]
  24. H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
    [Crossref]
  25. D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
    [Crossref]
  26. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
    [Crossref]
  27. Z. Ren, Y. Xu, Y. Qiu, K. K. Y. Wong, and K. Tsia, “Spectrally-resolved statistical characterization of seeded supercontinuum suppression using optical time-stretch,” Opt. Express 22, 11849–11860 (2014).
    [Crossref]
  28. H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
    [Crossref]
  29. X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot, A. Lerouge, Y. Quiquempois, and A. Mussot, “Correlation between multiple modulation instability side lobes in dispersion oscillating fiber,” Opt. Lett. 39, 1881–1884 (2014).
    [Crossref]
  30. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
    [Crossref]
  31. A. van de Walle, M. Hanna, F. Guichard, Y. Zaouter, A. Thai, N. Forget, and P. Georges, “Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared,” Opt. Lett. 40, 673–676 (2015).
    [Crossref]
  32. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
    [Crossref]
  33. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref]
  34. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
    [Crossref]
  35. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10, 457–459 (1985).
    [Crossref]
  36. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]
  37. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
    [Crossref]
  38. A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
    [Crossref]
  39. R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
    [Crossref]
  40. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
    [Crossref]
  41. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
    [Crossref]
  42. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref]
  43. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref]
  44. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
    [Crossref]
  45. K. S. Abedin and F. Kubota, “Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber,” Opt. Lett. 28, 1760–1762 (2003).
    [Crossref]
  46. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
    [Crossref]
  47. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [Crossref]
  48. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
    [Crossref]
  49. B. Stoicheff, “Characteristics of stimulated Raman radiation generated by coherent light,” Phys. Lett. 7, 186–188 (1963).
    [Crossref]
  50. N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
    [Crossref]
  51. T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
    [Crossref]
  52. A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
    [Crossref]
  53. X. Li, L. H. Liu, J. Zhao, and J. Tan, “Optical properties of sodium chloride solution within the spectral range from 300 to 2500  nm at room temperature,” Appl. Spectrosc. 69, 635–640 (2015).
    [Crossref]
  54. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
    [Crossref]
  55. S. Patankar, E. T. Gumbrell, T. S. Robinson, H. F. Lowe, S. Giltrap, C. J. Price, N. H. Stuart, P. Kemshall, J. Fyrth, J. Luis, J. W. Skidmore, and R. A. Smith, “Multiwavelength interferometry system for the Orion laser facility,” Appl. Opt. 54, 10592–10598 (2015).
    [Crossref]
  56. S. Patankar, E. T. Gumbrell, T. S. Robinson, E. Floyd, N. H. Stuart, A. S. Moore, J. W. Skidmore, and R. A. Smith, “Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation,” Appl. Opt. 56, 6982–6987 (2017).
    [Crossref]
  57. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref]
  58. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [Crossref]
  59. S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
    [Crossref]
  60. P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
    [Crossref]
  61. D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
    [Crossref]
  62. T. S. Robinson, “Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K2ZnCl4 salt solution,” Zenodo (2017), https://zenodo.org/record/883028.

2017 (4)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
[Crossref]

S. Patankar, E. T. Gumbrell, T. S. Robinson, E. Floyd, N. H. Stuart, A. S. Moore, J. W. Skidmore, and R. A. Smith, “Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation,” Appl. Opt. 56, 6982–6987 (2017).
[Crossref]

2016 (4)

J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
[Crossref]

A. N. Tcypkin, S. E. Putilin, M. V. Melnik, E. A. Makarov, V. G. Bespalov, and S. A. Kozlov, “Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet,” Appl. Opt. 55, 8390–8394 (2016).
[Crossref]

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

2015 (4)

2014 (3)

2012 (5)

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

2011 (1)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (4)

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[Crossref]

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

2007 (2)

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800  nm in photonic crystal fibers,” J. Opt. Soc. Am. B 24, 1410–1415 (2007).
[Crossref]

2006 (4)

E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
[Crossref]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

J. Lee, “Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications,” Electron. Lett. 42, 549–550 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (2)

2003 (7)

K. S. Abedin and F. Kubota, “Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber,” Opt. Lett. 28, 1760–1762 (2003).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. D. Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

2002 (1)

2001 (1)

1999 (1)

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

1998 (1)

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[Crossref]

1996 (1)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

1995 (1)

1990 (1)

J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
[Crossref]

1987 (1)

1986 (2)

1985 (1)

1975 (1)

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

1973 (1)

1969 (1)

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

1966 (2)

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

1963 (1)

B. Stoicheff, “Characteristics of stimulated Raman radiation generated by coherent light,” Phys. Lett. 7, 186–188 (1963).
[Crossref]

Abdolvand, A.

Abedin, K. S.

Ackermann, R.

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

Alfano, R. R.

André, Y.-B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Andresen, E. R.

Arissian, L.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Atkin, D. M.

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.

Austin, D. R.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Bandelow, U.

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Bandrauk, A.

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

Baudelet, M.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Baudisch, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Béjot, P.

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

Belli, F.

Bespalov, V. G.

Bethge, J.

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Biegert, J.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. D. Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref]

Bigot, L.

Bigourd, D.

Birkedal, V.

Birks, T. A.

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.

Bloembergen, N.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Braun, A.

Cao, Q.

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Caplan, V. L.

Carey, D. M.

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[Crossref]

Carman, R. L.

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Chandalia, J. K.

Chang, W.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Chemnitz, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Chiao, R. Y.

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Chin, S.

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

Chini, M.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Couairon, A.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Couderc, V.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Crespo, H. M.

Cundiff, S. T.

Demircan, A.

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Dharmadhikari, A. K.

J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
[Crossref]

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Dharmadhikari, J. A.

J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
[Crossref]

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Diels, J.-C.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Douay, M.

Du, D.

Dudley, J.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Dudley, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Durand, M.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Ebnali-Heidari, M.

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

Eggleton, B. J.

Elder, A.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Faccio, D.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Feehan, J. S.

Feurer, T.

Floyd, E.

Forget, N.

Fortier, T. M.

Foster, M. A.

Frank, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Fyrth, J.

Gaeta, A. L.

Gaida, C.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Gebhardt, M.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Genty, G.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Georges, P.

Giltrap, S.

Gopakumar, G.

Gordon, J. P.

Griebner, U.

Gu, X.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Guichard, F.

Gumbrell, E. T.

Gustafson, T. K.

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Hale, G. M.

Hammer, D. X.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Hanna, M.

Harvey, J. D.

Haus, H. A.

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Heidt, A. M.

Hemmer, M.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Herink, G.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

Herrmann, J.

Ho, P. P.

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Hult, J.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Husakou, A.

Huss, G.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Jalali, B.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

Jauregui, C.

Jimbo, T.

Jin, M.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Johnson, A. M.

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Kaminski, C.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Kasparian, J.

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Keiding, S. R.

Keller, U.

Kelley, P. L.

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Kemshall, P.

Kennedy, P. K.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Kimmel, M.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Knight, J.

Knight, J. C.

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.

Knox, W. H.

Kobelke, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Korenowski, G. M.

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[Crossref]

Korn, G.

Kosinski, S. G.

Kozlov, S. A.

Kubota, F.

Kudlinski, A.

X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot, A. Lerouge, Y. Quiquempois, and A. Mussot, “Correlation between multiple modulation instability side lobes in dispersion oscillating fiber,” Opt. Lett. 39, 1881–1884 (2014).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Labruyère, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Lallemand, P.

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Lee, J.

J. Lee, “Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications,” Electron. Lett. 42, 549–550 (2006).
[Crossref]

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Leonhardt, R.

Leproux, P.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Lerouge, A.

Li, H.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Li, Q. X.

Li, S.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Li, X.

Lifsitz, J. R.

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Lim, K.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Limpert, J.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
[Crossref]

Liu, L. H.

Liu, X.

Lowe, H. F.

Luis, J.

Makarov, E. A.

Mathur, D.

J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
[Crossref]

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Melnik, M. V.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Mitschke, F.

Mitschke, F. M.

Moghadasi, M. N.

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

Mollenauer, L. F.

Moore, A. S.

Moravvej-Farshi, M. K.

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

Mourou, G.

Mussot, A.

X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot, A. Lerouge, Y. Quiquempois, and A. Mussot, “Correlation between multiple modulation instability side lobes in dispersion oscillating fiber,” Opt. Lett. 39, 1881–1884 (2014).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Mysyrowicz, A.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Nishizawa, N.

N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
[Crossref]

Nisoli, M.

Noack, F.

Nodop, D.

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Noojin, G. D.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Palastro, J. P.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Patankar, S.

Price, C. J.

Price, J. H. V.

Putilin, S. E.

Qiu, Y.

Querry, M. R.

Quiquempois, Y.

Ren, Z.

Richardson, M.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Roach, W. P.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Robinson, T. S.

Rockwell, B. A.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Ropers, C.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

Rostami, S.

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Russell, P. St. J.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St. J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref]

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.

Saghaei, H.

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

Salmon, E.

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Sansone, G.

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Schenkel, B.

Schimpf, D.

Schmidt, M. A.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Sharma, R.

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Shi, Z.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Silva, F.

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Silvestri, S. D.

Singh, M.

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Skidmore, J. W.

Smith, R. A.

Solli, D.

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

Squier, J.

Stagira, S.

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Steinmeyer, G.

Stoicheff, B.

B. Stoicheff, “Characteristics of stimulated Raman radiation generated by coherent light,” Phys. Lett. 7, 186–188 (1963).
[Crossref]

Stolen, R.

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

Stolen, R. H.

Stuart, N. H.

Stutzki, F.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Sui, L.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Svelto, O.

Sylvestre, T.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Talebpour, A.

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

Tan, J.

Taran, J. P.

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Tcypkin, A. N.

Thai, A.

A. van de Walle, M. Hanna, F. Guichard, Y. Zaouter, A. Thai, N. Forget, and P. Georges, “Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared,” Opt. Lett. 40, 673–676 (2015).
[Crossref]

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

Thøgersen, J.

Thomas, R. J.

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

Tognetti, M. V.

Tomlinson, W. J.

Tonello, A.

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

Travers, J. C.

Trebino, R.

M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Tsia, K.

Tünnermann, A.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
[Crossref]

van de Walle, A.

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

Vasa, P.

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Voronin, A. A.

Vozzi, C.

Wadsworth, W. J.

Wang, H. Z.

J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
[Crossref]

Wang, Q. Z.

Wang, X.

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot, A. Lerouge, Y. Quiquempois, and A. Mussot, “Correlation between multiple modulation instability side lobes in dispersion oscillating fiber,” Opt. Lett. 39, 1881–1884 (2014).
[Crossref]

Watt, R.

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[Crossref]

Wolf, J.-P.

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref]

Wong, K. K. Y.

Wöste, L.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Xu, C.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[Crossref]

Xu, Y.

Yang, J.

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

Ye, J.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Yu, Z. X.

J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
[Crossref]

Zaouter, Y.

Zeek, E.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

Zhao, J.

Zheltikov, A. M.

Zhou, J. Y.

J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (3)

P. Béjot, J. Kasparian, E. Salmon, R. Ackermann, and J.-P. Wolf, “Spectral correlation and noise reduction in laser filaments,” Appl. Phys. B 87, 1–4 (2007).
[Crossref]

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[Crossref]

C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Y. Zhou, H. Z. Wang, and Z. X. Yu, “Efficient generation of ultrafast broadband radiation in a submillimeter liquid-core waveguide,” Appl. Phys. Lett. 57, 643–644 (1990).
[Crossref]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

A. Talebpour, A. Bandrauk, J. Yang, and S. Chin, “Multiphoton ionization of inner-valence electrons and fragmentation of ethylene in an intense Ti:sapphire laser pulse,” Chem. Phys. Lett. 313, 789–794 (1999).
[Crossref]

H. Li, Z. Shi, X. Wang, L. Sui, S. Li, and M. Jin, “Influence of dopants on supercontinuum generation during the femtosecond laser filamentation in water,” Chem. Phys. Lett. 681, 86–89 (2017).
[Crossref]

Electron. Lett. (1)

J. Lee, “Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications,” Electron. Lett. 42, 549–550 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, and W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996).
[Crossref]

R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[Crossref]

H. Saghaei, M. K. Moravvej-Farshi, M. Ebnali-Heidari, and M. N. Moghadasi, “Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF,” IEEE J. Sel. Top. Quantum Electron. 22, 279–286 (2016).
[Crossref]

J. Chem. Phys. (1)

D. M. Carey and G. M. Korenowski, “Measurement of the Raman spectrum of liquid water,” J. Chem. Phys. 108, 2669–2675 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibres,” Nat. Commun. 8, 42 (2017).
[Crossref]

Nat. Photonics (1)

D. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

Opt. Commun. (1)

A. Demircan and U. Bandelow, “Supercontinuum generation by the modulation instability,” Opt. Commun. 244, 181–185 (2005).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (2)

A. Labruyère, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18, 375–378 (2012).
[Crossref]

N. Nishizawa, “Generation and application of high-quality supercontinuum sources,” Opt. Fiber Technol. 18, 394–402 (2012).
[Crossref]

Opt. Lett. (16)

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. D. Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref]

X. Wang, D. Bigourd, A. Kudlinski, K. K. Y. Wong, M. Douay, L. Bigot, A. Lerouge, Y. Quiquempois, and A. Mussot, “Correlation between multiple modulation instability side lobes in dispersion oscillating fiber,” Opt. Lett. 39, 1881–1884 (2014).
[Crossref]

A. van de Walle, M. Hanna, F. Guichard, Y. Zaouter, A. Thai, N. Forget, and P. Georges, “Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared,” Opt. Lett. 40, 673–676 (2015).
[Crossref]

T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett. 27, 445–447 (2002).
[Crossref]

J. A. Dharmadhikari, G. Steinmeyer, G. Gopakumar, D. Mathur, and A. K. Dharmadhikari, “Femtosecond supercontinuum generation in water in the vicinity of absorption bands,” Opt. Lett. 41, 3475–3478 (2016).
[Crossref]

T. Jimbo, V. L. Caplan, Q. X. Li, Q. Z. Wang, P. P. Ho, and R. R. Alfano, “Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations,” Opt. Lett. 12, 477–479 (1987).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003).
[Crossref]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34, 3499–3501 (2009).
[Crossref]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[Crossref]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[Crossref]

X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, “Soliton self-frequency shift in a short tapered air-silica microstructure fiber,” Opt. Lett. 26, 358–360 (2001).
[Crossref]

K. S. Abedin and F. Kubota, “Widely tunable femtosecond soliton pulse generation at a 10-GHz repetition rate by use of the soliton self-frequency shift in photonic crystal fiber,” Opt. Lett. 28, 1760–1762 (2003).
[Crossref]

E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
[Crossref]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[Crossref]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10, 457–459 (1985).
[Crossref]

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
[Crossref]

Optica (1)

Phys. Lett. (1)

B. Stoicheff, “Characteristics of stimulated Raman radiation generated by coherent light,” Phys. Lett. 7, 186–188 (1963).
[Crossref]

Phys. Rev. (1)

T. K. Gustafson, J. P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, “Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments,” Phys. Rev. 177, 306–313 (1969).
[Crossref]

Phys. Rev. A (1)

P. Vasa, J. A. Dharmadhikari, A. K. Dharmadhikari, R. Sharma, M. Singh, and D. Mathur, “Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion,” Phys. Rev. A 89, 043834 (2014).
[Crossref]

Phys. Rev. Lett. (5)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref]

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

N. Bloembergen and P. Lallemand, “Complex intensity-dependent index of refraction, frequency broadening of stimulated Raman lines, and stimulated Rayleigh scattering,” Phys. Rev. Lett. 16, 81–84 (1966).
[Crossref]

R. L. Carman, R. Y. Chiao, and P. L. Kelley, “Observation of degenerate stimulated four-photon interaction and four-wave parametric amplification,” Phys. Rev. Lett. 17, 1281–1283 (1966).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (2)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2, 882 (2012).
[Crossref]

S. Rostami, M. Chini, K. Lim, J. P. Palastro, M. Durand, J.-C. Diels, L. Arissian, M. Baudelet, and M. Richardson, “Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments,” Sci. Rep. 6, 20363 (2016).
[Crossref]

Science (2)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003).
[Crossref]

Other (2)

J. C. Knight, T. A. Birks, D. M. Atkin, and P. St. J. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,” in Optical Fiber Communication Conference (Optical Society of America, 1996), paper PD3.

T. S. Robinson, “Spectral characterization of a supercontinuum source based on nonlinear broadening in an aqueous K2ZnCl4 salt solution,” Zenodo (2017), https://zenodo.org/record/883028.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Layout of the setup used to acquire spectra for analysis of the supercontinuum source’s spectral stability. A holographic diffuser was used to spatially smooth the pulses in order to isolate the overall pulse-to-pulse spectral stability.
Fig. 2.
Fig. 2. Variation of the supercontinuum pulse energy with the input driver pulse energy, measured after removing the fundamental 1054 nm component using an IR mirror. Each data point is the mean value measured over 100 shots. A quadratic fit was found to match the data most closely. Error bars shown are the standard deviations of the mean input IR and supercontinuum energies.
Fig. 3.
Fig. 3. Supercontinuum spectrum generated from the K2ZnCl4 (aq) solution using 1054 nm drive pulses of 2.42±0.04  mJ and 500±50  fs. The spectrum was spatially smoothed using a holographic diffuser, and averaged over 50 shots, with the ensemble standard deviation at each wavelength point shown as an error bar. All 50 spectra measured at this input energy are also shown in gray for comparison. The spectrum is overlaid with the water absorption profile [57].
Fig. 4.
Fig. 4. Absorption curve for a broadened spectrum (with the driver centered on 1054 nm) before and after propagation through 5 cm of water, calculated using absorption data reported in [57]. Spectral intensities have been normalized to the peak of the initial spectrum.
Fig. 5.
Fig. 5. Variation of the output RMS energy stability against input RMS; no clear correlation was observed. Each data point reflects the RMS stabilities about a particular mean energy value, where the mean energies range between 1.09±0.02 and 2.42±0.04  mJ.
Fig. 6.
Fig. 6. Energy scaling of the global shot-to-shot spectral stability σglo in the cases of (a) no scaling to input RMS energy stability and (b) with the data scaled to the input RMS stability values for each energy. The metric for stability at each energy is quantified by sorting spectral intensity data into 1.8 nm bins, and calculating σglo using Eqs. (2) and (3). Uncertainties shown in the error bars reflect the standard deviations of the mean stability percentages for each input energy value.
Fig. 7.
Fig. 7. Variation in the RMS energy stability in the supercontinuum pulse, measured using a broadband surface-absorbing Gentec energy meter. The data is presented (a) without and (b) with scaling to the input pulse RMS energy stabilities. The scaling factor applied to (b) was the ratio of the smallest percentage RMS stability of the dataset and the input RMS stability for a given average input energy. The correction factors are displayed as error bars to indicate the additional uncertainty introduced by increased input energy variability.
Fig. 8.
Fig. 8. Sample of spectral stability plots depicting σλi, the SD of the measured intensity counts as a percentage of the mean value for each 1.8 nm wide wavelength bin. Each plot was obtained using spectra measured at the various indicated input driver pulse energies.
Fig. 9.
Fig. 9. Spectral correlation map covering the full measurable spectrum of the supercontinuum generated in the double-salt solution, measured for 1054 nm drive pulses of 2.42±0.04  mJ energies and 500±50  fs FWHM durations. The positively correlated (orange) region spanning 390–900 nm suggests that this part of the spectrum is generated via the same process, while the negative correlation between this wavelength band and the narrow region around the fundamental is consistent with sideband formation via self-phase modulation as energy is shifted from the drive pulse to the supercontinuum.
Fig. 10.
Fig. 10. Spectral correlation map covering multiple regions of the continuum in more detail. Input pulse energies of 2.42±0.04  mJ were used. The region around the fundamental wavelength is shown in (a), with regions of negative correlation around the drive wavelength implying transfer of energy to the sidebands, visible in greater detail in (b). In (c), bands of negative correlation between the peaks at 894 and 927  nm and the rest of the supercontinuum imply that some secondary process shifts energy from these peaks into the visible spectral region. The effect of absorption features reducing the correlation magnitudes is examined in (d), where the map is centered on 780  nm, corresponding to the trough visible in Fig. 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n(r,t)=n0+n2I(r,t),
σλi=100I¯λi(Iλi2¯)(I¯λi)2,
σglo=σ¯λi.
ρ(λ1,λ2)=I(λ1)I(λ2)I(λ1)I(λ2)(I2(λ1)I(λ1)2)(I2(λ2)I(λ2)2),

Metrics