Abstract

In this paper, we present a robust technique of stereo calibration using homography constraints. Our method is novel as stereo calibration is performed by solving a polynomial equation system including two radial distortion parameters, using a minimal number of five image point correspondences. This enables us to calibrate from only a pair of stereo images of a planar scene, and to provide the exact algebraic solution to the stereo calibration problem. The minimal case solution is useful to reduce the computation time and increase the calibration robustness when using random sample consensus (RANSAC) from the correspondences of the stereo image pair. Further, a non-linear parameter optimization for the intrinsic and extrinsic parameters of stereo cameras is performed using the inliers, which are determined after RANSAC. In addition, our method can achieve more robust calibration results with multiple stereo image pairs by performing joint optimization. In contrast to the previous stereo calibration methods, our method works without requiring any special hardware and has no problems with one stereo image pair, even corrupted by severe radial distortions. Finally, by evaluating our method on both synthetic and real scene data, we demonstrate that our method is both efficient and accurate for stereo calibration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Camera self-calibration from translation by referring to a known camera

Bin Zhao and Zhaozheng Hu
Appl. Opt. 54(25) 7789-7798 (2015)

Calibration of stereo cameras from two perpendicular planes

Zhaozheng Hu and Zheng Tan
Appl. Opt. 44(24) 5086-5090 (2005)

High-precision method of binocular camera calibration with a distortion model

Weimin Li, Siyu Shan, and Hui Liu
Appl. Opt. 56(8) 2368-2377 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription