Abstract

Bias error, along with scale factor, is a key factor that affects the measurement accuracy of the fiber-optic current sensor. Because of polarization crosstalk, the coherence of parasitic interference signals could be rebuilt and form an output independent of the current to be measured, i.e., the bias error. The bias error is a variable of the birefringence optical path difference. Hence, when the temperature changes, the bias error shows a quasi-periodical tendency whose envelope curve reflects the coherence function of light source. By identifying the key factors of bias error and setting the propagation directions of a super-luminescent diode, polarization-maintaining coupler and polarizer to fast axis, it is possible to eliminate the coherence of parasitic interference signals. Experiments show that the maximum bias error decreases by one order of magnitude at temperatures between 40°C to 60°C.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bias-free optical current sensors based on quadrature interferometric integrated optics

Sung-Moon Kim, Tae-Hyun Park, Guanghao Huang, and Min-Cheol Oh
Opt. Express 26(24) 31599-31606 (2018)

Effect and elimination of alignment error in an optical fiber current sensor

Shaoyi Xu, Wei Li, Yuqiao Wang, and Fangfang Xing
Opt. Lett. 39(16) 4751-4754 (2014)

Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect

Chunxi Zhang, Chuansheng Li, Xiaxiao Wang, Lijing Li, Jia Yu, and Xiujuan Feng
Appl. Opt. 51(18) 3977-3988 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription