Abstract

We report here the design and experimental demonstration of optically pumped photonic crystal bandedge membrane lasers on silicon-on-insulator (SOI) and on bulk silicon (Si) substrates, based on heterogeneously integrated InGaAsP multi-quantum-well membrane layers transfer printed onto patterned photonic crystal cavities. Single-mode lasing under room-temperature operation was observed at 1542 nm, with excellent side mode suppression ratio greater than 31.5 dB, for the laser built on SOI substrate. For the laser built on bulk Si substrate, single-mode lasing was also achieved at 1452 nm with much lower thermal resistance, as compared to that of the laser built on SOI substrates. Such improved thermal characteristics are favorable for lasers operating potentially at higher temperatures and higher power.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal management in hybrid InP/silicon photonic crystal nanobeam laser

Alexandre Bazin, Paul Monnier, Xavier Lafosse, Grégoire Beaudoin, Rémy Braive, Isabelle Sagnes, Rama Raj, and Fabrice Raineri
Opt. Express 22(9) 10570-10578 (2014)

Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si

Si Zhu, Bei Shi, Qiang Li, Yating Wan, and Kei May Lau
Opt. Express 25(25) 31281-31293 (2017)

Over 1 hour continuous-wave operation of photonic crystal lasers

Sunghwan Kim, Jeongkug Lee, and Heonsu Jeon
Opt. Express 19(1) 1-6 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription