Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system

Not Accessible

Your library or personal account may give you access

Abstract

This paper reports open-path in situ measurements of atmospheric carbon dioxide at Gandhinagar (23.2156°N, 72.6369°E) and Ahmedabad (23.0225°N, 72.5714°E) in the heavily industrialized state of Gujarat in western India. Calibration-free second harmonic wavelength modulation spectroscopy (2f WMS) is used to carry out accurate and fully automated measurements. The mean values of the mole fraction of carbon dioxide at four locations were 438 ppm, 495 ppm, 550 ppm, and 740 ppm, respectively. These values are much higher than the current global average of 406.67 ppm. A 1 mW, 2004-nm vertical cavity surface-emitting laser is used to selectively interrogate the R16 transition of carbon dioxide at 2003.5 nm (4991.2585 cm−1). The 2f WMS signal corresponding to the gas absorption line shape is simulated using spectroscopic parameters available in the HITRAN database and relevant laser parameters that are extracted in situ from non-absorbing spectral wings of the harmonic signals. The mole fraction of carbon dioxide is extracted in real-time by a MATLAB program from least-squares fit of the simulated 2f WMS signal to the corresponding experimentally obtained signal. A 10-mW, 1392.54-nm distributed feedback laser is used at two of the locations to carry out water vapor measurements using direct absorption spectroscopy. This is the first instance of a portable tunable diode laser spectroscopy system being deployed in an urban location in India to measure atmospheric carbon dioxide and water vapor under varying traffic conditions. The measurements clearly demonstrate the need to adopt tunable diode laser spectroscopy for precise long-term monitoring of greenhouse gases in the Indian subcontinent.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Double-pulse 1.57  μm integrated path differential absorption lidar ground validation for atmospheric carbon dioxide measurement

Juan Du, Yadan Zhu, Shiguang Li, Junxuan Zhang, Yanguang Sun, Huaguo Zang, Dan Liu, Xiuhua Ma, Decang Bi, Jiqiao Liu, Xiaolei Zhu, and Weibiao Chen
Appl. Opt. 56(25) 7053-7058 (2017)

Evaluation of an airborne triple-pulsed 2  μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements

Tamer F. Refaat, Upendra N. Singh, Jirong Yu, Mulugeta Petros, Syed Ismail, Michael J. Kavaya, and Kenneth J. Davis
Appl. Opt. 54(6) 1387-1398 (2015)

Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide

R. A. Rooth, A. J. L. Verhage, and L. W. Wouters
Appl. Opt. 29(25) 3643-3653 (1990)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (22)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved