Abstract

Lasers and laser diodes are widely used as illumination sources for optical imaging techniques. Time-of-flight (ToF) cameras with laser diodes and range imaging based on optical interferometry systems using lasers are among these techniques, with various applications in fields such as metrology and machine vision. ToF cameras can have imaging ranges of several meters, but offer only centimeter-level depth resolution. On the other hand, range imaging based on optical interferometry has depth resolution on the micrometer and even nanometer scale, but offers very limited (sub-millimeter) imaging ranges. In this paper, we propose a range imaging system based on multi-wavelength superheterodyne interferometry to simultaneously provide sub-millimeter depth resolution and an imaging range of tens to hundreds of millimeters. The proposed setup uses two tunable III-V semiconductor lasers and offers leverage between imaging range and resolution. The system is composed entirely of fiber connections except the scanning head, which enables it to be made into a portable device. We believe our proposed system has the potential to tremendously benefit many fields, such as metrology and computer vision.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity

Yan Liang, Jianhua Huang, Min Ren, Baicheng Feng, Xiuliang Chen, E Wu, Guang Wu, and Heping Zeng
Opt. Express 22(4) 4662-4670 (2014)

Two-wavelength laser interferometry using superheterodyne detection

R. Dändliker, R. Thalmann, and D. Prongué
Opt. Lett. 13(5) 339-341 (1988)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Gåsvik, Optical Metrology (Wiley, 2003).
  2. S. Se and P. Jasiobedzki, “Photo-realistic 3D model reconstruction,” in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp. 3076–3082.
  3. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.
  4. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
    [Crossref]
  5. T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).
  6. R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.
  7. R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.
  8. C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2006), Vol. 102.
  9. Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia 19, 4–10 (2012).
  10. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.
  11. S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
    [Crossref]
  12. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).
  13. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [Crossref]
  14. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [Crossref]
  15. H. Haitjema, “Achieving traceability and sub-nanometer uncertainty using interferometric techniques,” Meas. Sci. Technol. 19, 084002 (2008).
    [Crossref]
  16. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3, 1496–1503 (2016).
    [Crossref]
  17. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  18. F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
    [Crossref]
  19. F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
    [Crossref]
  20. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [Crossref]
  21. C. G. Gordon, “Generic vibration criteria for vibration-sensitive equipment,” Proc. SPIE 3786, 22–33 (1999).
    [Crossref]
  22. M. Reich, R. Schieder, H. J. Clar, and G. Winnewisser, “Internally coupled Fabry-Perot interferometer for high precision wavelength control of tunable diode lasers,” Appl. Opt. 25, 130–135 (1986).
    [Crossref]
  23. L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
    [Crossref]
  24. M. De Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5  μm using doppler-free molecular lines,” Opt. Lett. 20, 572–574 (1995).
    [Crossref]
  25. Y. Chung and C. Roxlo, “Frequency-locking of a 1.5  μm DFB laser to an atomic krypton line using optogalvanic effect,” Electron. Lett. 24, 1048–1049 (1988).
    [Crossref]
  26. R. J. Jones and J.-C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86, 3288–3291 (2001).
    [Crossref]
  27. F. Friederich, G. Schuricht, A. Deninger, F. Lison, G. Spickermann, P. H. Bolívar, and H. G. Roskos, “Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range,” Opt. Express 18, 8621–8629 (2010).
    [Crossref]

2016 (1)

2014 (2)

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

2013 (1)

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

2012 (1)

Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia 19, 4–10 (2012).

2011 (1)

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

2010 (1)

2008 (1)

H. Haitjema, “Achieving traceability and sub-nanometer uncertainty using interferometric techniques,” Meas. Sci. Technol. 19, 084002 (2008).
[Crossref]

2005 (1)

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

2001 (2)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

R. J. Jones and J.-C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86, 3288–3291 (2001).
[Crossref]

1999 (1)

C. G. Gordon, “Generic vibration criteria for vibration-sensitive equipment,” Proc. SPIE 3786, 22–33 (1999).
[Crossref]

1995 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1988 (2)

R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
[Crossref]

Y. Chung and C. Roxlo, “Frequency-locking of a 1.5  μm DFB laser to an atomic krypton line using optogalvanic effect,” Electron. Lett. 24, 1048–1049 (1988).
[Crossref]

1986 (1)

1982 (1)

L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

1974 (1)

Albrecht, M.

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

Alenya, G.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Askeland, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Awaji, Y.

Becker, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Berdichevsky, Y.

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Biber, A.

R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.

Bolívar, P. H.

Brangaccio, D. J.

Bruning, J. H.

Burgard, W.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

Buxbaum, B.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chen, C. S.

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

Chen, L.

Chung, Y.

Y. Chung and C. Roxlo, “Frequency-locking of a 1.5  μm DFB laser to an atomic krypton line using optogalvanic effect,” Electron. Lett. 24, 1048–1049 (1988).
[Crossref]

Clar, H. J.

Cogguillo, W.

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Cremers, D.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

Dändliker, R.

De Labachelerie, M.

Deninger, A.

Diels, J.-C.

R. J. Jones and J.-C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86, 3288–3291 (2001).
[Crossref]

Doerr, C.

Dolson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Dresel, T.

Dryer, A.

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Endres, F.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

Engelhard, N.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

Fischer, H.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Foix, S.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Frey, J.

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

Friederich, F.

Fujimoto, J. G.

Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, and J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3, 1496–1503 (2016).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gallagher, J. E.

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology (Wiley, 2003).

Goldberg, L.

L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Gordon, C. G.

C. G. Gordon, “Generic vibration criteria for vibration-sensitive equipment,” Proc. SPIE 3786, 22–33 (1999).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gregson, J.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

Haitjema, H.

H. Haitjema, “Achieving traceability and sub-nanometer uncertainty using interferometric techniques,” Meas. Sci. Technol. 19, 084002 (2008).
[Crossref]

Häusler, G.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heide, F.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

Heidrich, W.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

Heinol, H.-G.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Held, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Herriott, D. R.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huang, X.

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

Hullin, M. B.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

Jasiobedzki, P.

S. Se and P. Jasiobedzki, “Photo-realistic 3D model reconstruction,” in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp. 3076–3082.

Jayaraman, V.

Jones, R. J.

R. J. Jones and J.-C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86, 3288–3291 (2001).
[Crossref]

Kammel, S.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Klein, R.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Kolter, J. Z.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Kraft, H.

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

Lange, R.

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.

Langer, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Lauxtermann, S. C.

R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.

Lee, H.-C.

Levinson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Li, F.

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lison, F.

Möller, T.

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

Nakagawa, K.

Nguyen, D.-H. T.

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

Nielson, T.

Ohtsu, M.

Olk, J.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Pink, O.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Potsaid, B.

Pratt, V.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Prongué, D.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Reich, M.

Rosenfeld, D. P.

Roskos, H. G.

Roxlo, C.

Y. Chung and C. Roxlo, “Frequency-locking of a 1.5  μm DFB laser to an atomic krypton line using optogalvanic effect,” Electron. Lett. 24, 1048–1049 (1988).
[Crossref]

Schieder, R.

Schulte, J.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Schuricht, G.

Schwarte, R.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Se, S.

S. Se and P. Jasiobedzki, “Photo-realistic 3D model reconstruction,” in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp. 3076–3082.

Seitz, P.

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.

Sokolsky, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Song, Y.

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Spickermann, G.

Stanek, G.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Stavens, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sturm, J.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Taylor, H.

L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Teichman, A.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Thalmann, R.

Thrun, S.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Torras, C.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Venzke, H.

Wang, Z.

Weitkamp, C.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2006), Vol. 102.

Weller, J.

L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Werling, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

White, A. D.

Winnewisser, G.

Xu, T.

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

Xu, Z.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

Zhang, Z.

Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia 19, 4–10 (2012).

Zhou, C.

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

ACM Trans. Graph. (ToG) (1)

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. (ToG) 32, 45 (2013).

Appl. Opt. (3)

Electron. Lett. (2)

L. Goldberg, H. Taylor, and J. Weller, “Fm sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Y. Chung and C. Roxlo, “Frequency-locking of a 1.5  μm DFB laser to an atomic krypton line using optogalvanic effect,” Electron. Lett. 24, 1048–1049 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
[Crossref]

IEEE MultiMedia (1)

Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE MultiMedia 19, 4–10 (2012).

IEEE Sens. J. (1)

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (TOF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

J. Biomed. Opt. (1)

F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free evaluation of angiogenic sprouting in microengineered devices using ultrahigh-resolution optical coherence microscopy,” J. Biomed. Opt. 19, 016006 (2014).
[Crossref]

Meas. Sci. Technol. (1)

H. Haitjema, “Achieving traceability and sub-nanometer uncertainty using interferometric techniques,” Meas. Sci. Technol. 19, 084002 (2008).
[Crossref]

Neurophotonics (1)

F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou, “Nondestructive evaluation of progressive neuronal changes in organotypic rat hippocampal slice cultures using ultrahigh-resolution optical coherence microscopy,” Neurophotonics 1, 025002 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rev. Lett. (1)

R. J. Jones and J.-C. Diels, “Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis,” Phys. Rev. Lett. 86, 3288–3291 (2001).
[Crossref]

Proc. SPIE (1)

C. G. Gordon, “Generic vibration criteria for vibration-sensitive equipment,” Proc. SPIE 3786, 22–33 (1999).
[Crossref]

Range Imaging Day, Zürich (1)

T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange, “Robust 3D measurement with PMD sensors,” Range Imaging Day, Zürich 7, 8 (2005).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Other (7)

R. Lange, P. Seitz, A. Biber, and S. C. Lauxtermann, “Demodulation pixels in CCD and CMOS technologies for time-of-flight ranging,” in Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 177–188.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD),” in Lasers and Optics in Manufacturing III (International Society for Optics and Photonics, 1997), pp. 245–253.

C. Weitkamp, Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2006), Vol. 102.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 573–580.

K. J. Gåsvik, Optical Metrology (Wiley, 2003).

S. Se and P. Jasiobedzki, “Photo-realistic 3D model reconstruction,” in Proceedings of IEEE International Conference on Robotics and Automation (2006), pp. 3076–3082.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in IEEE Intelligent Vehicles Symposium (2011), pp. 163–168.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of our proposed setup: Two tunable lasers are used as the illumination sources. FC, fiber coupler; EOM, eletro-optic modulator; CIR, fiber circulator; APD, avalanche photo-diode; D1, driver for EOM 1; and D2, driver for EOM 2. All fibers are polarization maintaining. The NI card and the two drivers are controlled with a computer. Red lines, sample arm. Black lines, reference arm.

Fig. 2.
Fig. 2.

Signal processing flow for one point: (a) simulated APD output; (b) spectrum of simulated APD output; (c) signal after the mixer in the quadratic sensor; (d) spectrum of mixer output; (e) signal after the quadratic sensor; (f) spectrum of the quadratic sensor output; (g) analog-to-digital conversion by the DAQ card (red line) of the quadratic sensor output (black line); and (h) inset of the signal in (g).

Fig. 3.
Fig. 3.

(a) Groundtruth 3D objects; (b) simulated 3D images with no noise added in the APD and the NI card; and (c) simulated 3D images with noise added. The x axis and the y axis mark the pixel number in the x and y dimensions. Different colors represent the depth information with values from 0 to 100 mm. Color bar units are in meters.

Fig. 4.
Fig. 4.

A line plot across the simulated 3D object in Fig. 3(a), depth values on pixels along the line in simulated measurement with noise, simulated measurement without noise, and ground truth. The imaging range is about 60 mm as shown in the plot; (b) inset of (a) shows a zoomed-in offset between measurements and the ground truth. There is overlap between the noiseless simulated measurement and the ground truth.

Fig. 5.
Fig. 5.

(a) Tilted plane being measured along with the schematic of the scan; (b) driving signals to EOM 1 and galvo scanner; and (c) inset of (b).

Fig. 6.
Fig. 6.

(a) DAQ card readout shows the phase-modulated signal; and (b) inset of (a).

Fig. 7.
Fig. 7.

Results and the depth calculated. (a) Phase value calculated at different points; and (b) corresponding depth information.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Ii=αi+βicos(4πficz+ϕi);i=t,o,p.
Es(t)=α1βE1ei(2πν1t+Vtλ1+4πλ1Ls)+α2βE2ei(2πν2t+Vtλ2+4πλ2Ls),
Er(t)=γ1E1ei(2πν1t+4πλ1Lr+ψ+2πft)+γ2E2ei(2πν2t+4πλ2Lr+2πft),
I(t)=(Es(t)+Er(t))×(Es(t)*+Er(t)*)=a0+a1cos(Vtλ1+ϕ1ψ2πft)+a2cos(Vtλ2+ϕ22πft),
S(t)=I(t)2=[a0+a1cos(Vtλ1+ϕ1ψ2πft)+a2cos(Vtλ2+ϕ22πft)]2.
L(t)=m1·cos(VtΛ+4πLΛψ)+m2,
o(t)=m1cos(VtΛ+4πLΛψ)+m2m1cos(4πLΛψ)+m2.
o(t)=m1cos(4πΔνcLψ)+m2,
o1=oacos(4πΔνcL)+ob,
o2=oacos(4πΔνcLπ2)=oasin(4πΔνcL)+ob,
o3=oacos(4πΔνcLπ)=oacos(4πΔνcL)+ob,
o4=oacos(4πΔνcL3π2)=oasin(4πΔνcL)+ob.
L=c4πΔνarctan(o2o4o1o3).

Metrics