Abstract

The wavelength, λ, range of 1.8  μmλ3.5  μm contains strong spectral absorption lines of many gases used in health, industry, safety, and medicine and whose sensitive and quantitative detection is desirable. However, the performance of InP diode lasers markedly deteriorates beyond λ2  μm. In this paper we present new results on developing tunable high power single mode laser diodes based on the GaSb material system with emission in the wavelength range of 1.8  μmλ2.2  μm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications

Quentin Gaimard, Meriam Triki, Tong Nguyen-Ba, Laurent Cerutti, Guilhem Boissier, Roland Teissier, Alexei Baranov, Yves Rouillard, and Aurore Vicet
Opt. Express 23(15) 19118-19128 (2015)

Single-Mode Monolithic GaSb Vertical-Cavity Surface-Emitting Laser

Dorian Sanchez, Laurent Cerutti, and Eric Tournié
Opt. Express 20(14) 15540-15546 (2012)

Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy

Abdelmagid Salhi, David Barat, Daniele Romanini, Yves Rouillard, Aimeric Ouvrard, Ralph Werner, Jochen Seufert, Johannes Koeth, Aurore Vicet, and Arnaud Garnache
Appl. Opt. 45(20) 4957-4965 (2006)

References

  • View by:
  • |
  • |
  • |

  1. C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
    [Crossref]
  2. R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
    [Crossref]
  3. Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
    [Crossref]
  4. “Semiconductor database of Ioffe Inst. St. Petersburg,” http://www.ioffe.ru/SVA/NSM/Semicond/
  5. T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.
  6. D. Sanchez, L. Cerutti, and E. Tournié, “Single-mode monolithic GaSb vertical-cavity surface-emitting laser,” Opt. Express 20, 15540–15546 (2012).
    [Crossref]
  7. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
    [Crossref]
  8. Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single frequency sources from 2 to 3  μm for gas sensing applications,” Opt. Express 23, 19118–19128 (2015).
    [Crossref]
  9. J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
    [Crossref]
  10. A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
    [Crossref]
  11. M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
    [Crossref]
  12. J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
    [Crossref]
  13. M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
    [Crossref]
  14. J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
    [Crossref]
  15. “DWD website to climate gases,” http://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/trace_gases/cont_nav/climate_gases.html .
  16. “HITRAN spectra simulation website,” http://spectraplot.com .
  17. A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
    [Crossref]
  18. S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
    [Crossref]
  19. L. Hildebrandt, R. Knispel, S. Stry, J. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy,” Appl. Opt. 42, 2110–2118 (2003).
    [Crossref]
  20. S. Rauch and J. Sacher, “Compact Bragg grating stabilized Ridge waveguide laser module with a power of 380  mW at 780  nm,” IEEE Photon. Technol. Lett. 27, 1737–1740 (2015).
    [Crossref]

2017 (2)

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

2015 (3)

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

S. Rauch and J. Sacher, “Compact Bragg grating stabilized Ridge waveguide laser module with a power of 380  mW at 780  nm,” IEEE Photon. Technol. Lett. 27, 1737–1740 (2015).
[Crossref]

Q. Gaimard, M. Triki, T. Nguyen-Ba, L. Cerutti, G. Boissier, R. Teissier, A. Baranov, Y. Rouillard, and A. Vicet, “Distributed feedback GaSb based laser diodes with buried grating: a new field of single frequency sources from 2 to 3  μm for gas sensing applications,” Opt. Express 23, 19118–19128 (2015).
[Crossref]

2013 (2)

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

2012 (1)

2011 (1)

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

2009 (2)

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

2006 (1)

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

2004 (1)

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

2003 (1)

1992 (1)

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

1991 (1)

J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[Crossref]

Aers, G. C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Assmann, C.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

Baranov, A.

Barrios, P. J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Baums, D.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

Belenky, G.

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Bogdanovich, M. V.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Boissier, G.

Carpintero, G.

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

Cerutti, L.

Chen, J.

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Chen, L.-H.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Ebert, V.

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

Elsässer, W.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[Crossref]

Gaimard, Q.

Göbel, E. O.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[Crossref]

Gupta, J. A.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Halmer, D.

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

Hering, P.

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

Hildebrandt, L.

Jimenez, A.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Jiménez, A.

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

Kabanov, V. V.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Kiefer, R.

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

Kipshidze, G.

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Knispel, R.

Kurlenkov, S. S.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Lapointe, J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Lebiadok, Y. V.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Li, K.-W.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Liang, R.

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Mehta, S. K.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Milde, T.

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Mürtz, M.

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

Nguyen-Ba, T.

Nwaboh, J. A.

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

O’Gorman, J.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Ortwein, P.

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

Panknin, P.

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

Rattunde, M.

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

Rauch, S.

S. Rauch and J. Sacher, “Compact Bragg grating stabilized Ridge waveguide laser module with a power of 380  mW at 780  nm,” IEEE Photon. Technol. Lett. 27, 1737–1740 (2015).
[Crossref]

Rouillard, Y.

Ryabtsev, A. G.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Ryabtsev, G. I.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Sacher, J.

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

S. Rauch and J. Sacher, “Compact Bragg grating stabilized Ridge waveguide laser module with a power of 380  mW at 780  nm,” IEEE Photon. Technol. Lett. 27, 1737–1740 (2015).
[Crossref]

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

L. Hildebrandt, R. Knispel, S. Stry, J. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy,” Appl. Opt. 42, 2110–2118 (2003).
[Crossref]

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[Crossref]

Sacher, J. R.

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Sahay, P.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Sanchez, D.

Sapozhnikov, S. M.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Schael, F.

Schiel, D.

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

Schmitz, J.

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

Shchemelev, M. A.

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Shterengas, D. L.

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Song, G.-F.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Song, J.-K.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Song, Y.-Z.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Staacke, N.

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

Storey, C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Stry, S.

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

L. Hildebrandt, R. Knispel, S. Stry, J. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy,” Appl. Opt. 42, 2110–2118 (2003).
[Crossref]

Teissier, R.

Thelen, S.

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

Tournié, E.

Triki, M.

Vicet, A.

Wagner, J.

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

Wang, C.

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Werhahn, O.

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

Xu, Y.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Zhang, Y.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Zhang, Z.-Y.

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Jiménez, T. Milde, N. Staacke, C. Assmann, G. Carpintero, and J. Sacher, “Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range,” Appl. Phys. B 123, 207 (2017).
[Crossref]

S. Stry, S. Thelen, J. Sacher, D. Halmer, P. Hering, and M. Mürtz, “Widely tunable diffraction limited 1000  mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy,” Appl. Phys. B 85, 365–374 (2006).
[Crossref]

Appl. Phys. Lett. (2)

M. Rattunde, J. Schmitz, R. Kiefer, and J. Wagner, “Comprehensive analysis of the internal losses in 2.0  mm (AlGaIn)(AsSb) quantum-well diode lasers,” Appl. Phys. Lett. 84, 4750–4752 (2004).
[Crossref]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95, 041104 (2009).
[Crossref]

Chin. Phys. Lett. (1)

Y.-Z. Song, Y. Zhang, J.-K. Song, K.-W. Li, Z.-Y. Zhang, Y. Xu, G.-F. Song, and L.-H. Chen, “Single mode 2  μm GaSb based laterally coupled distributed feedback quantum-well laser diodes with metal grating,” Chin. Phys. Lett. 32, 074206 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Sacher, W. Elsässer, and E. O. Göbel, “Nonlinear dynamics of semiconductor laser emission under variable feedback conditions,” IEEE J. Quantum Electron. 27, 373–379 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Rauch and J. Sacher, “Compact Bragg grating stabilized Ridge waveguide laser module with a power of 380  mW at 780  nm,” IEEE Photon. Technol. Lett. 27, 1737–1740 (2015).
[Crossref]

R. Liang, J. Chen, G. Kipshidze, D. L. Shterengas, and G. Belenky, “High-power 2.2  μm diode lasers with heavily strained active region,” IEEE Photon. Technol. Lett. 23, 603–605 (2011).
[Crossref]

Meas. Sci. Technol. (1)

J. A. Nwaboh, O. Werhahn, P. Ortwein, D. Schiel, and V. Ebert, “Laser-spectrometric gas analysis: CO2–TDLAS at 2  μm,” Meas. Sci. Technol. 24, 015202 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

M. V. Bogdanovich, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, S. S. Kurlenkov, S. M. Sapozhnikov, and S. K. Mehta, “Optimal output mirror reflection coefficient for powerful InGaAs/AlGaAs laser diode arrays,” Opt. Laser Technol. 45, 177–180 (2013).
[Crossref]

Phys. Rev. A (1)

J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1905 (1992).
[Crossref]

Proc. SPIE (1)

A. Jimenez, T. Milde, N. Staacke, C. Assmann, J. O’Gorman, and J. Sacher, “Narrow-line diode laser packaging and integration in the NIR and MIR spectral range,” Proc. SPIE 10085, 1008505 (2017).
[Crossref]

Sensors (1)

C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[Crossref]

Other (4)

“DWD website to climate gases,” http://www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/trace_gases/cont_nav/climate_gases.html .

“HITRAN spectra simulation website,” http://spectraplot.com .

“Semiconductor database of Ioffe Inst. St. Petersburg,” http://www.ioffe.ru/SVA/NSM/Semicond/

T. Milde, A. Jimenez, J. R. Sacher, and J. O’Gorman, “Long wavelength single mode GaSb diode lasers for sensor applications,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Measured photoluminescence spectrum of GaSb layer structure of Table 1.

Fig. 2.
Fig. 2.

Simulated layer thickness and its effect on the guided mode.

Fig. 3.
Fig. 3.

Calculated far-field patterns of the mode guided under the waveguide.

Fig. 4.
Fig. 4.

Calculated L versus I curves for different FP chip lengths.

Fig. 5.
Fig. 5.

Measured L versus I curve for an FP chip of length Lcav=400  μm.

Fig. 6.
Fig. 6.

Calculated L versus I curves for different chip lengths in a single mode tunable mode configuration.

Fig. 7.
Fig. 7.

Measured L versus I curve for a 400 μm chip length in single tunable mode configuration.

Fig. 8.
Fig. 8.

L versus I versus I curve for the λ2  μm GaSb digital DFB laser diode. The wavelength tuning behavior with bias current can be seen in the upper inset for different temperatures. In the lower inset the measured optical spectrum is shown, with an SMSR value of 35.59 dB.

Fig. 9.
Fig. 9.

Measured ro-vibrational R15 to R17 states of CO2 in the range of 1999.5 to 2001 nm at 4.5 mbar (red curve); calculated HITRAN spectrum by spectraplot.com [16] (black curve) under the same conditions.

Fig. 10.
Fig. 10.

L versus I versus I curve of the λ2.114  μm digital DFB laser diode at TLD=20°C. The behavior with bias current can be clearly seen in the upper inset for different temperatures. In the lower inset the emission spectrum is plotted and the optical spectrum. An SMSR of 36.7 dB is measured, limited by the sensitivity of the optical spectrum analyzer.

Fig. 11.
Fig. 11.

Measured ro-vibrational P33 to P35 states of N2O in the wavelength range of 2129.7  nmλ2131.5  nm (red curve); calculated HITRAN spectrum by spectraplot.com [16] (black curve) under the same conditions.

Fig. 12.
Fig. 12.

PI curve of the 1.95 μm ECDL at the central wavelength. The motor tuning behavior and with it the power to wavelength correlation is shown in the upper inset. In the lower inset the optical spectrum is displayed for both extremes of the tuning behavior with an SMSR value of 52.4 dB at 1.88 μm and 55 dB at 2.02 μm.

Fig. 13.
Fig. 13.

Measured absorption states of water vapor in the wavelength range of 1.895  μmλ1.91  μm nm (red curve); calculated HITRAN spectrum by spectraplot.com [16] (black curve) under the same conditions.

Tables (1)

Tables Icon

Table 1. Typical Layer Structure of the Grown GaSb Single Mode Diode Lasers

Metrics