Abstract

Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

17 October 2017: A minor correction was made to the paper title.


OSA Recommended Articles
Reducing thermal crosstalk in ten-channel tunable slotted-laser arrays

I. Mathews, A. Abdullaev, S. Lei, R. Enright, M. J. Wallace, and J. F. Donegan
Opt. Express 23(18) 23380-23393 (2015)

Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power

Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, Rowel Go, and C. Kumar N. Patel
Opt. Express 20(4) 4382-4388 (2012)

Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode

Benjamin S. Williams, Sushil Kumar, Qing Hu, and John L. Reno
Opt. Express 13(9) 3331-3339 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription