Abstract

We examine systematic errors in x-ray imaging by pinhole optics for quantifying uncertainties in the measurement of convergence and asymmetry in inertial confinement fusion implosions. We present a quantitative model for the total resolution of a pinhole optic with an imaging detector that more effectively describes the effect of diffraction than models that treat geometry and diffraction as independent. This model can be used to predict loss of shape detail due to imaging across the transition from geometric to diffractive optics. We find that fractional error in observable shapes is proportional to the total resolution element we present and inversely proportional to the length scale of the asymmetry being observed. We have experimentally validated our results by imaging a single object with differently sized pinholes and with different magnifications.

Full Article  |  PDF Article
OSA Recommended Articles
Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas

Jeffrey A. Koch, Otto L. Landen, Laurence J. Suter, Laurent P. Masse, Daniel S. Clark, James S. Ross, Andrew J. Mackinnon, Nathan B. Meezan, Cliff A. Thomas, and Yuan Ping
Appl. Opt. 52(15) 3538-3556 (2013)

Development of a polar-view Kirkpatrick-Baez X-ray microscope for implosion asymmetry studies

Yaran Li, Jianjun Dong, Qing Xie, Jie Xu, Hanwei Liu, Wenjie Li, Xin Wang, Baozhong Mu, Zhanshan Wang, Fansheng Chen, Kuan Ren, Xing Zhang, Yudong Pu, Shenye Liu, Feng Wang, Shaoen Jiang, and Yongkun Ding
Opt. Express 27(6) 8348-8360 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription