Abstract

A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Advanced hyperspectral video imaging system using Amici prism

Jiao Feng, Xiaojing Fang, Xun Cao, Chenguang Ma, Qionghai Dai, Hongbo Zhu, and Yongjin Wang
Opt. Express 22(16) 19348-19356 (2014)

Compound prism design principles, I

Nathan Hagen and Tomasz S. Tkaczyk
Appl. Opt. 50(25) 4998-5011 (2011)

Video rate spectral imaging using a coded aperture snapshot spectral imager

Ashwin A. Wagadarikar, Nikos P. Pitsianis, Xiaobai Sun, and David J. Brady
Opt. Express 17(8) 6368-6388 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).
  2. M. V. R. K. Murty and A. L. Narasimham, “Some new direct vision dispersion prism systems,” Appl. Opt. 9, 859–862 (1970).
    [Crossref]
  3. X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).
  4. A. A. Wagadarikar, N. P. Pitsianis, X. B. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17, 6368–6388 (2009).
    [Crossref]
  5. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shoot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref]
  6. A. A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008).
    [Crossref]
  7. H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23, 12207–12221 (2015).
    [Crossref]
  8. X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).
  9. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, I,” Appl. Opt. 50, 4998–5011 (2011).
    [Crossref]
  10. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, II,” Appl. Opt. 50, 5012–5022 (2011).
    [Crossref]
  11. N. Hagen and T. S. Tkaczyk, “Compound prism design principles, III,” Appl. Opt. 50, 5023–5030 (2011).
    [Crossref]
  12. H. J. V. Tyrrell and G. K. T. Conn, “The optical properties of a compound liquid prism suitable for studies of the Raman effect,” J. Opt. Soc. Am. 42, 106–113 (1952).
    [Crossref]
  13. M. Kyrish, U. Utzinger, M. R. Descour, B. K. Baggett, and T. S. Tkaczyk, “Ultra-slim plastic endomicroscope objective for non-linear microscopy,” Opt. Express 19, 7603–7615 (2011).
    [Crossref]
  14. R. T. Kester, T. Christenson, R. R. Kortum, and T. S. Tkaczyk, “Low cost, high performance, self- aligning miniature optical systems,” Appl. Opt. 48, 3375–3384 (2009).
    [Crossref]
  15. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [Crossref]
  16. “Schott optical glass data sheets,” Advanced Optics Hattenbergstrasse 10 55122 Mainz, Germany.
  17. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
    [Crossref]
  18. S. Bäumer, Handbook of Plastic Optics, 2nd ed. (Wiley-VCH, 2010).
  19. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), p. 1.
  20. A. K. Brodzik and J. M. Mooney, “Convex projections algorithm for restoration of limited-angle chromotomographic images,” J. Opt. Soc. Am. A 16, 246–257 (1999).
    [Crossref]
  21. R. W. Deming, “Chromotomography for a rotating-prism instrument using backprojection, then filtering,” Opt. Lett. 31, 2281–2283 (2006).
    [Crossref]

2015 (1)

2012 (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

2011 (4)

2009 (2)

2008 (1)

2007 (2)

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shoot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
[Crossref]

2006 (1)

2004 (1)

X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).

1999 (1)

1970 (1)

1952 (1)

Arce, G. R.

Baggett, B. K.

Bäumer, S.

S. Bäumer, Handbook of Plastic Optics, 2nd ed. (Wiley-VCH, 2010).

Brady, D.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Brady, D. J.

Brodzik, A. K.

Carin, L.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Christenson, T.

Conn, G. K. T.

Deming, R. W.

Descour, M. R.

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shoot compressive spectral imaging with a dual disperser architecture,” Opt. Express 15, 14013–14027 (2007).
[Crossref]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Greivenkamp, J. E.

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), p. 1.

Hagen, N.

Hai, X. G.

X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).

John, R.

Kester, R. T.

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Komatsu, M.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
[Crossref]

Kortum, R. R.

Kyrish, M.

Lau, D.

Llull, P.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Minami, K.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
[Crossref]

Mooney, J. M.

Murty, M. V. R. K.

Narasimham, A. L.

Obuchi, K.

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
[Crossref]

Pitsianis, N. P.

Qi, X. Y.

X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).

Rong, S.

X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).

Rueda, H.

Schulz, T. J.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Sun, X. B.

Tkaczyk, T. S.

Tsai, T.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Tyrrell, H. J. V.

Utzinger, U.

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Wagadarikar, A. A.

Willett, R.

Willett, R. M.

Yuan, X.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Zhu, R.

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nature (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Precis. Eng. (1)

X. G. Hai, S. Rong, and X. Y. Qi, “Design of microscopic hyperspectral imaging system,” Opt. Precis. Eng. 12, 3672372 (2004).

Proc. SPIE (1)

K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer ZEONEX®,” Proc. SPIE 6671, 66711I (2007).
[Crossref]

Other (5)

S. Bäumer, Handbook of Plastic Optics, 2nd ed. (Wiley-VCH, 2010).

J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE, 2004), p. 1.

W. J. Smith, Modern Optical Engineering, 4th ed. (McGraw-Hill, 2008).

X. Yuan, T. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive hyperspectral imaging with side information,” arXiv:1502.06260, (2015).

“Schott optical glass data sheets,” Advanced Optics Hattenbergstrasse 10 55122 Mainz, Germany.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Ray tracing through a simple prism.

Fig. 2.
Fig. 2.

Diagram of ray tracing through a double Amici prism.

Fig. 3.
Fig. 3.

Design curves of double Amici prism: (a) linear design curve; (b) nonlinear deign curve.

Fig. 4.
Fig. 4.

Combination of linear and nonlinear design curves in double Amici prism design.

Fig. 5.
Fig. 5.

Design parameters of a direct-vision E48R/N-SF4/E48R double Amici prism as a function of a prism’s total dispersion difference.

Fig. 6.
Fig. 6.

Dispersion curve of light double Amici prism design with E48R/N-SF4/E48R (right axis) and the corresponding dispersion gradient (left axis).

Fig. 7.
Fig. 7.

Schematic of the ray tracing through direct-vision spectral imaging system.

Fig. 8.
Fig. 8.

Spot diagrams of designed prism (E48R/N-SF4/E48R) at nine different field points at a 450 nm light source; the unit here is micrometer.

Fig. 9.
Fig. 9.

Spot diagrams of a glass prism (SK2/SF4/SK2) at nine different field points at a 450 nm light source; the unit here is also micrometer.

Tables (2)

Tables Icon

Table 1. Several Physical, Optical, and Thermal Properties of Two Plastics and Three Glassesa

Tables Icon

Table 2. RMS Radii Range at Different Field Positions with Wavelength between 450 and 650 nm of Two Prisms

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

i1(λ)=i0(λ)β.
i1(λ)=arcsin(1nsini1(λ)).
i2(λ)=i1(λ)α.
i2(λ)=arcsin(n·sini2(λ)).
i3(λ)=i2(λ)+γ.
Δ(λ)=i0(λ)i3(λ)=i1(λ)i2(λ)α.
D=Δ(λmin)Δ(λmax),
Δ(λ)=(n1)α.
Vd=nd1nFnC,
V=n(λ¯)1n(λmax)n(λmin),
RSNL=|dΔ(λ)dλ|max|dΔ(λ)dλ|min|dΔ(λ)dλ|max=1|dΔ(λ)dλ|min/|dΔ(λ)dλ|max.
Δ¯=2(n1(λ¯)1)α1+(n2(λ¯)1)α2.
D=2Δ¯1V1+Δ¯2V2,
α2=2(n1(λ¯)1)(1n2(λ¯))α1.
α2=2(V2n2(λ¯)1+V2V1(n1(λ¯)1)(1n2(λ¯))α1).
i1(λ)=i0(λ)β1,i1(λ)=asin(1n1sini1(λ)),i2(λ)=i1(λ)α1i2(λ)=asin(n1n2sini2(λ)),i3(λ)=i2(λ)α2,i3(λ)=asin(n2n1sini3(λ))i4(λ)=i3(λ)α1,i4(λ)=asin(n2sini4(λ)),i5(λ)=i4(λ)β1},
Δ¯=i0(λ)i4(λ)+β1,
D=i4(λmax)i4(λmin),
Dgrating=arcsin(λmax/d)arcsin(λmin/d),

Metrics