Abstract

This paper details the feasibility of using fiber-based tools in a computer numerical control (CNC) environment to process optical materials and their ability to reduce the amplitude of pre-existing mid-spatial-frequency (MSF) surface errors. The work is motivated by earlier research conducted by the group exploring the ability of polymeric fiber-based tools to remove material from BK7 glass substrates. To evaluate these tools in a CNC environment, three tasks are explored. First, the ability of the tools to maintain their form and material removal profile while operating under translational conditions is explored. Second, the ability of the tools to disengage and re-engage with the workpiece edge, and how this affects the tool’s material removal profile. Finite element (FE) modelling of the fiber–workpiece edge interaction was conducted to support the experimental work. And third, the deterministic behavior of the tool under full raster conditions is verified. Testing on a 3-axis CNC machine tool demonstrated that the tooling is sufficiently robust and stable to operate under translational and rotational speeds of 30 mm/s and 1000 rpm, respectively. Both the FE modeling and experimental testing confirmed the truncation of a fiber’s material removal profile as a fiber extends beyond the workpiece edge. The ability of fiber-based tools to reduce MSF errors was explored both through FE modeling and experimental testing on germanium samples. Both the FE model and experimental results demonstrate that fiber-based tools can successfully reduce pre-existing MSF errors.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parametric modeling of edge effects for polishing tool influence functions

Dae Wook Kim, Won Hyun Park, Sug-Whan Kim, and James H. Burge
Opt. Express 17(7) 5656-5665 (2009)

Edge control in a computer controlled optical surfacing process using a heterocercal tool influence function

Haixiang Hu, Xin Zhang, Virginia Ford, Xiao Luo, Erhui Qi, Xuefeng Zeng, and Xuejun Zhang
Opt. Express 24(23) 26809-26824 (2016)

Edge effect modeling and experiments on active lap processing

Haitao Liu, Fan Wu, Zhige Zeng, Bin Fan, and Yongjian Wan
Opt. Express 22(9) 10761-10774 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription