Abstract

We report here for the first time, to the best of our knowledge, a 100-kW-peak-power, GHz-linewidth, sub-nanosecond, 1.9-μm laser source by gas stimulated Raman scattering (SRS) in hollow-core fiber. A H2-filled, anti-resonance, hollow-core fiber is pumped with a sub-nanosecond, high-peak-power, 1064-nm microchip laser, generating a 1908-nm Stokes wave by vibrational SRS of H2 molecules. A maximum peak power of about 150 kW (average power 55 mW, pulse energy 55 μJ) is achieved with a 1.4-m fiber length and only 3 bar H2 pressure. The maximum quantum efficiency is about 54%, and the corresponding slope efficiency is about 37%. The linewidth of the Stokes wave is about 2 GHz, which decreases about 1–2 orders compared with the rare-earth-doped fiber lasers of the same peak-power level. Operation close to atmospheric pressure makes it more convenient in future applications. If a tunable pump laser is used, a high-peak-power, narrow-linewidth, broadly tunable, 2-μm fiber laser source can be easily achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription