Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application

Not Accessible

Your library or personal account may give you access

Abstract

Benefiting from close to ideal amplification properties (high gain, low dark current, and low excess noise factor), HgCdTe electron initiated avalanche photodiode (e-APD) technology exhibits state of the art sensitivity, thus being especially relevant for applications relying on low light level detection, such as LIDAR (Light Detection And Ranging). In addition, the tunable gap of the Hg1xCdxTe alloy enables coverage of the short wavelength infrared (SWIR) and especially the 2 μm spectral range. For these two reasons, a HgCdTe e-APD based detector is a promising candidate for future differential absorption LIDAR missions targeting greenhouse gas absorption bands in SWIR. In this study, we report on the design and evaluation of such a HgCdTe e-APD based detector. The first part focuses on detector architecture and performance. Key figures of merit are: 2.8 μm cutoff wavelength, 200 μm diameter almost circular sensitive area, 185 K operating temperature (thermo-electric cooling), 22 APD gain (at 12 V reverse bias), 360 transimpedance gain, and 60fWHz0.5 noise equivalent power (at 12 V reverse bias). The second part presents an analysis of atmospheric LIDAR signals obtained by mounting the HgCdTe e-APD based detector on the 2 μm differential absorption LIDAR developed at the Laboratoire de Météorologie Dynamique and dedicated to CO2 monitoring. Discussion emphasizes random and systematic errors in LIDAR measurements regarding breadboard detector characterization. In particular, we investigate the influence of parasitic tails in detector impulse response on short range DIAL measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths

Xiaoli Sun, James B. Abshire, Jeffrey D. Beck, Pradip Mitra, Kirk Reiff, and Guangning Yang
Opt. Express 25(14) 16589-16602 (2017)

Feasibility study of a space-based high pulse energy 2 μm CO2 IPDA lidar

Upendra N. Singh, Tamer F. Refaat, Syed Ismail, Kenneth J. Davis, Stephan R. Kawa, Robert T. Menzies, and Mulugeta Petros
Appl. Opt. 56(23) 6531-6547 (2017)

Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles

Yasukuni Shibata, Chikao Nagasawa, and Makoto Abo
Appl. Opt. 56(4) 1194-1201 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.