Abstract

We report on investigations of the spatial variations of contamination, roughness, and index of refraction of classically manufactured polished fused silica surfaces. Therefore, laser-induced breakdown spectroscopy was used to probe surface and subsurface impurities via the detection of aluminum. Measurements at different positions on the surface of the cylindrical fused silica windows evidenced an almost contamination-free center region, whereas a relatively large contamination area was found close to the edge. In-depth measurements verify the presence of aluminum atoms in the bulk until a depth of several tens of microns for the edge region. In addition, atomic force microscopic measurements show that the surface roughness is larger in the center region compared to the edge. Further, the index of refraction increases from the center region towards the edge as measured via ellipsometry. The results indicate a nonuniform impact of the grinding, lapping, and polishing tools on the surface. The findings turn out to be of specific interest for different applications, particularly for the realization of large-scale high-performance coatings.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription