Abstract

We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multilayer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. When data pages are randomly laterally shifted, the MLP was found to have a classification accuracy of 93.02%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is 2 orders of magnitude better than the MLP.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Autoencoder-based holographic image restoration

Tomoyoshi Shimobaba, Yutaka Endo, Ryuji Hirayama, Yuki Nagahama, Takayuki Takahashi, Takashi Nishitsuji, Takashi Kakue, Atsushi Shiraki, Naoki Takada, Nobuyuki Masuda, and Tomoyoshi Ito
Appl. Opt. 56(13) F27-F30 (2017)

Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks

Xianpeng Li, Ran Liao, Jialing Zhou, Priscilla T. Y. Leung, Meng Yan, and Hui Ma
Appl. Opt. 56(23) 6520-6530 (2017)

Dynamic digital photorefractive memory for optoelectronic neural network learning modules

Hironori Sasaki, Nicolas Mauduit, Jian Ma, Yeshaiahu Fainman, Sing H. Lee, and Michael S. Gray
Appl. Opt. 35(23) 4641-4654 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription