Abstract

We propose a vector mode conversion approach based on asymmetric fiber Bragg gratings (AFBGs) written in step-index fiber and vortex fiber, respectively. The mode coupling properties of AFBGs are numerically investigated. Compared to step-index fiber, the large mode separation in the vortex fiber is beneficial to extracting the desired vector mode at specific wavelengths. In addition, the polarization of incident light and the attenuation coefficient of index change distribution of the AFBG play critical roles in the mode coupling process. The proposed AFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for orbital angular momentum multiplexing and fiber lasers with vortex beam output.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating

Yunhe Zhao, Changle Wang, Guolu Yin, Biqiang Jiang, Kaiming Zhou, Chengbo Mou, Yunqi Liu, Lin Zhang, and Tingyun Wang
Appl. Opt. 57(7) 1671-1678 (2018)

High-order mode conversion in a few-mode fiber via laser-inscribed long-period gratings at 1.55 µm and 2 µm wavebands

Xinyi Zhao, Yunhe Zhao, Yunqi Liu, Zuyao Liu, Chengbo Mou, Lei Shen, Lei Zhang, and Jie Luo
Appl. Opt. 59(34) 10688-10694 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription