Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mean estimation empirical mode decomposition method for terahertz time-domain spectroscopy de-noising

Not Accessible

Your library or personal account may give you access

Abstract

The wavelet-domain de-noising technique has many applications in terahertz time-domain spectroscopy (THz-TDS). However, it requires a complex procedure for the selection of the optimal wavelet basis and threshold, which varies for different materials. Inappropriate selections can lead to de-noising failure. Here, we propose the Mean Estimation Empirical Mode Decomposition (ME-EMD) de-noising method for THz-TDS. First, the THz-TDS signal and the collected reference noise are decomposed into the intrinsic mode functions (IMFs); second, the maximum and mean absolute values of the noise IMF amplitudes are calculated and defined as the adaptive threshold and adaptive estimated noise value, respectively; finally, these thresholds and estimated noise values are utilized to filter the noise from the signal IMFs and reconstruct the THz-TDS signal. We also calculate the signal-to-noise ratio (SNR) and mean square error (MSE) for the ME-EMD method, the “db7” wavelet basis, and the “sym8” wavelet basis after de-noising in both the simulation and the real sample experiments. Both theoretical analysis and experimental results demonstrated that the new ME-EMD method is a simple, effective, and high-stability de-noising tool for THz-TDS pulses. The measured refractive index curves are compared before and after de-noising and demonstrated that the de-noising process is necessary and useful for measuring the optical constants of a sample.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer

Chunmin Zhang, Wenyi Ren, Tingkui Mu, Lili Fu, and Chenling Jia
Opt. Express 21(3) 2592-2605 (2013)

Signal-to-noise ratio improvement of Brillouin optical time domain analysis system based on empirical mode decomposition and finite impulse response

Jieru Zhao, Tao Wang, Qian Zhang, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Shaohua Gao, Jingyang Liu, and Jian Li
Appl. Opt. 59(14) 4220-4227 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.