Abstract

The phase information of a complex field is routinely obtained using coherent measurement techniques as, e.g., interferometry or holography. The obtained measurement result is subject to a 2π ambiguity and is often referred to as wrapped phase. Phase-unwrapping algorithms (PUAs) are commonly employed to remove this ambiguity and, hence, obtain the absolute phase. However, implementing PUAs can be computationally intensive, and the accuracy of those algorithms may be low. Recently, the transport of intensity equation (TIE) has been proposed as a simple and practical alternative for obtaining the absolute phase map. Nevertheless, an efficient implementation of this technique has not yet been made. In this work, we propose an accurate solution for the TIE-based PUA that does not require the use of wave-propagation techniques, as previously reported TIE-based approaches. The proposed method calculates directly the axial derivative of the intensity from the wrapped phase when considering the correct propagation method. This is done in order to bypass the time-consuming wave-propagation techniques employed in similar methods. The analytical evaluation of this parameter allows obtaining an accurate solution when unwrapping the phase map with low computational effort. This work further introduces the use of the iterative TIE-PUA that, in a few steps, improves significantly the accuracy of the final absolute phase map, even in the presence of noise or aliasing of the wrapped data. The high accuracy and utility of the developed TIE-PUA technique is proven by both numerical simulations and experiments for various objects.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional phase unwrapping using the transport of intensity equation

Neeraj Pandey, Amitava Ghosh, and Kedar Khare
Appl. Opt. 55(9) 2418-2425 (2016)

Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation

Chao Zuo, Qian Chen, Lei Huang, and Anand Asundi
Opt. Express 22(14) 17172-17186 (2014)

Fast and robust three-dimensional best path phase unwrapping algorithm

Hussein S. Abdul-Rahman, Munther A. Gdeisat, David R. Burton, Michael J. Lalor, Francis Lilley, and Christopher J. Moore
Appl. Opt. 46(26) 6623-6635 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription