Abstract

We theoretically propose and experimentally validate a practical random bit generation method based on the detections of a coherent state in the few-photon regime by a gated single-photon threshold detector, operating at the telecom wavelength of 1550 nanometers. By fine tuning the mean number of photons per pulse of a laser beam directed to the single-photon detector, a 50–50 chance of detection or no-detection is reached; under this condition, detections inside the gate window are treated as “1”s, while “0”s are associated with the absence of detections. The same method could also be applied in a free-running single-photon detector for increased throughput by chopping the light signal instead of gating the detector. Both hardware implementations yielded bit strings, which were evaluated by a standard randomness test suite with good confidence. Despite the yet low rates achieved by the proposed method, its hardware compatibility with quantum key distribution setups makes it an interesting candidate for random number generation within the context of practical quantum communications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum random number generation enhanced by weak-coherent states interference

T. Ferreira da Silva, G. B. Xavier, G. C. Amaral, G. P. Temporão, and J. P. von der Weid
Opt. Express 24(17) 19574-19580 (2016)

High speed optical quantum random number generation

Harald Fürst, Henning Weier, Sebastian Nauerth, Davide G. Marangon, Christian Kurtsiefer, and Harald Weinfurter
Opt. Express 18(12) 13029-13037 (2010)

Spatio-temporal optical random number generator

M. Stipčević and J. E. Bowers
Opt. Express 23(9) 11619-11631 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription