Abstract

Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

Full Article  |  PDF Article
OSA Recommended Articles
Position-resolved Raman spectra from a laser-trapped single airborne chemical droplet

Aimable Kalume, Eric Zhu, Chuji Wang, Joshua Santarpia, and Yong-Le Pan
Opt. Lett. 42(24) 5113-5116 (2017)

Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Measurement of back-scattering patterns from single laser trapped aerosol particles in air

Yong-Le Pan, Chuji Wang, Leonid A. Beresnev, Alex J. Yuffa, Gorden Videen, David Ligon, and Joshua L. Santarpia
Appl. Opt. 56(3) B1-B4 (2017)

References

  • View by:
  • |
  • |
  • |

  1. OPCW, “Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction,” (1993), https://www.opcw.org// .
  2. K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).
  3. A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
    [Crossref]
  4. V. Miller and M. Hogan, Health Effects of Project Shad Chemical Agent: Diethylphthalate (National Academies Silver Spring, 2004).
  5. J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
    [Crossref]
  6. M. L. Good, “A proposed particle containment device,” (California University, 1953).
  7. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  8. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [Crossref]
  9. R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
    [Crossref]
  10. E. J. Davis, “A history of single particle levitation,” Aerosol Sci. Technol. 26, 212–254 (1997).
    [Crossref]
  11. J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
    [Crossref]
  12. K. Schaschek, J. Popp, and W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
    [Crossref]
  13. T. Kaiser, G. Roll, and G. Schweiger, “Investigation of coated droplets in an optical trap: Raman-scattering, elastic-light-scattering, and evaporation characteristics,” Appl. Opt. 35, 5918–5924 (1996).
    [Crossref]
  14. M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
    [Crossref]
  15. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
    [Crossref]
  16. L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
    [Crossref]
  17. J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
    [Crossref]
  18. M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
    [Crossref]
  19. Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20, 5325–5334 (2012).
    [Crossref]
  20. C. Wang, Y. L. Pan, S. C. Hill, and B. Redding, “Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air,” J. Quant. Spectrosc. Radiat. Transfer 153, 4–12 (2015).
    [Crossref]
  21. L. Ling and Y. Q. Li, “Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam,” Opt. Lett. 38, 416–418 (2013).
    [Crossref]
  22. R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
    [Crossref]
  23. B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
    [Crossref]
  24. A. Ashkin and J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
    [Crossref]
  25. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
    [Crossref]
  26. B. Redding and Y. L. Pan, “Optical trap for both transparent and absorbing particles in air using a single shaped laser beam,” Opt. Lett. 40, 2798–2801 (2015).
    [Crossref]
  27. L. V. Lorenz, “Oeuvres scientifiques de L. Lorenz,” in Revues Et Annotées, H. Valentiner, ed. (Librairie lehman & Stage, 1898).
  28. W. Hergert and T. Wriedt, The Mie Theory Basics and Applications, Springer Series in Optical Sciences (Springer, 2012), Vol. 169.
  29. A. K. Ray, A. Souyri, E. J. Davis, and T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
    [Crossref]
  30. V. V. Devarakonda and A. K. Ray, “Determination of thermodynamic parameters from evaporation of binary microdroplets of volatile constituents,” J. Colloid Interface Sci. 221, 104–113 (2000).
    [Crossref]
  31. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).
  32. R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).
  33. W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).
  34. R. Thurn and W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [Crossref]
  35. J. B. Snow, S. X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref]
  36. V. E. Roman and J. Popp, “In situ microparticle diagnostic by stimulated Raman scattering,” Phys. Chem. Chem. Phys. 1, 5491–5495 (1999).
    [Crossref]
  37. Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
    [Crossref]
  38. Z. Gong, Y. L. Pan, and C. Wang, “Optical configuration for photophoretic trap of single particles in air,” Rev. Sci. Instrum. 87, 103104 (2016).
    [Crossref]
  39. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  40. V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Minority species detection in aerosols by stimulated anti-stokes-Raman scattering and external seeding,” Appl. Opt. 38, 1418–1422 (1999).
    [Crossref]
  41. L. Pasternack, J. W. Fleming, and J. C. Owrutsky, “Optically seeded stimulated Raman scattering of aqueous sulfate microdroplets,” J. Opt. Soc. Am. B 13, 1510–1516 (1996).
    [Crossref]
  42. Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
    [Crossref]
  43. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [Crossref]
  44. J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
    [Crossref]
  45. S. C. Hill, R. E. Benner, C. K. Rushforth, and P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [Crossref]
  46. S. Anand, M. Eryurek, Y. Karadag, A. Erten, A. Serpenguzel, A. Jonas, and A. Kiraz, “Observation of whispering gallery modes in elastic light scattering from microdroplets optically trapped in a microfluidic channel,” J. Opt. Soc. Am. B 33, 1349–1354 (2016).
    [Crossref]
  47. T. C. Preston and J. P. Reid, “Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering,” J. Opt. Soc. Am. A 32, 1053–1062 (2015).
    [Crossref]

2016 (2)

2015 (5)

T. C. Preston and J. P. Reid, “Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering,” J. Opt. Soc. Am. A 32, 1053–1062 (2015).
[Crossref]

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

B. Redding and Y. L. Pan, “Optical trap for both transparent and absorbing particles in air using a single shaped laser beam,” Opt. Lett. 40, 2798–2801 (2015).
[Crossref]

C. Wang, Y. L. Pan, S. C. Hill, and B. Redding, “Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air,” J. Quant. Spectrosc. Radiat. Transfer 153, 4–12 (2015).
[Crossref]

2014 (1)

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

2013 (2)

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

L. Ling and Y. Q. Li, “Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam,” Opt. Lett. 38, 416–418 (2013).
[Crossref]

2012 (1)

2011 (1)

J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
[Crossref]

2008 (1)

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

2006 (2)

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[Crossref]

2005 (2)

A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
[Crossref]

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

2004 (4)

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
[Crossref]

2000 (1)

V. V. Devarakonda and A. K. Ray, “Determination of thermodynamic parameters from evaporation of binary microdroplets of volatile constituents,” J. Colloid Interface Sci. 221, 104–113 (2000).
[Crossref]

1999 (2)

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Minority species detection in aerosols by stimulated anti-stokes-Raman scattering and external seeding,” Appl. Opt. 38, 1418–1422 (1999).
[Crossref]

V. E. Roman and J. Popp, “In situ microparticle diagnostic by stimulated Raman scattering,” Phys. Chem. Chem. Phys. 1, 5491–5495 (1999).
[Crossref]

1997 (1)

E. J. Davis, “A history of single particle levitation,” Aerosol Sci. Technol. 26, 212–254 (1997).
[Crossref]

1996 (2)

1993 (1)

K. Schaschek, J. Popp, and W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[Crossref]

1991 (1)

1985 (3)

1984 (1)

1982 (1)

J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

1981 (1)

1975 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref]

1973 (1)

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

Alexson, D.

Allen, T. M.

Anand, S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Barber, P. W.

J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Benner, R. E.

Beresnev, L. A.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Berglund, R. N.

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Buajarern, J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

Butler, J. R.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

Caruso, J. A.

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Chak, C. K.

Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
[Crossref]

Chang, R. K.

J. B. Snow, S. X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[Crossref]

J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Choi, M. Y.

Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
[Crossref]

Clark, I. P.

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Coleman, M.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20, 5325–5334 (2012).
[Crossref]

Conwell, P. R.

Davis, E. J.

Devarakonda, V. V.

V. V. Devarakonda and A. K. Ray, “Determination of thermodynamic parameters from evaporation of binary microdroplets of volatile constituents,” J. Colloid Interface Sci. 221, 104–113 (2000).
[Crossref]

Di Cessa, S.

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Easter, R. N.

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Erten, A.

Eryurek, M.

Farrar, L. W.

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

Fields, M. H.

Fleming, J. W.

Gilham, R. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

Gong, Z.

Z. Gong, Y. L. Pan, and C. Wang, “Optical configuration for photophoretic trap of single particles in air,” Rev. Sci. Instrum. 87, 103104 (2016).
[Crossref]

Good, M. L.

M. L. Good, “A proposed particle containment device,” (California University, 1953).

Goodman, R. B.

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

Gouesbet, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

Gréhan, G.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

Haigh, P. E.

A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
[Crossref]

Hanford, K. L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

Hergert, W.

W. Hergert and T. Wriedt, The Mie Theory Basics and Applications, Springer Series in Optical Sciences (Springer, 2012), Vol. 169.

Hill, H. H.

A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
[Crossref]

Hill, S. C.

C. Wang, Y. L. Pan, S. C. Hill, and B. Redding, “Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air,” J. Quant. Spectrosc. Radiat. Transfer 153, 4–12 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Y. L. Pan, S. C. Hill, and M. Coleman, “Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra,” Opt. Express 20, 5325–5334 (2012).
[Crossref]

S. C. Hill, R. E. Benner, C. K. Rushforth, and P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[Crossref]

Hogan, M.

V. Miller and M. Hogan, Health Effects of Project Shad Chemical Agent: Diethylphthalate (National Academies Silver Spring, 2004).

Hopkins, R. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

Jeys, T. H.

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

Jin-Ju, G.

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

Johnston, R. L.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

Jonas, A.

Kaiser, T.

Kanu, A. B.

A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
[Crossref]

Karadag, Y.

Kiefer, W.

King, M. D.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref]

Kiraz, A.

Kriek, M.

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Kroening, K. K.

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Lavoie, J.

J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
[Crossref]

Li, Y. Q.

Ling, L.

Liu, B. Y. H.

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

Lorenz, L. V.

L. V. Lorenz, “Oeuvres scientifiques de L. Lorenz,” in Revues Et Annotées, H. Valentiner, ed. (Librairie lehman & Stage, 1898).

Meng, W.

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

Miller, V.

V. Miller and M. Hogan, Health Effects of Project Shad Chemical Agent: Diethylphthalate (National Academies Silver Spring, 2004).

Mitchem, L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[Crossref]

Nagarajan, R.

J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Neylon, C.

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Owen, J. F.

J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Owrutsky, J. C.

Pan, Y. L.

Pan, Y.-L.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Parker, A. W.

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Pasternack, L.

Popp, J.

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Minority species detection in aerosols by stimulated anti-stokes-Raman scattering and external seeding,” Appl. Opt. 38, 1418–1422 (1999).
[Crossref]

V. E. Roman and J. Popp, “In situ microparticle diagnostic by stimulated Raman scattering,” Phys. Chem. Chem. Phys. 1, 5491–5495 (1999).
[Crossref]

K. Schaschek, J. Popp, and W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[Crossref]

Preston, T. C.

Qian, S. X.

Ray, A. K.

V. V. Devarakonda and A. K. Ray, “Determination of thermodynamic parameters from evaporation of binary microdroplets of volatile constituents,” J. Colloid Interface Sci. 221, 104–113 (2000).
[Crossref]

A. K. Ray, A. Souyri, E. J. Davis, and T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
[Crossref]

Redding, B.

Reid, J. P.

T. C. Preston and J. P. Reid, “Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering,” J. Opt. Soc. Am. A 32, 1053–1062 (2015).
[Crossref]

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[Crossref]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
[Crossref]

Richardson, D. D.

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Roach, P. L.

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Roll, G.

Roman, V. E.

V. E. Roman, J. Popp, M. H. Fields, and W. Kiefer, “Minority species detection in aerosols by stimulated anti-stokes-Raman scattering and external seeding,” Appl. Opt. 38, 1418–1422 (1999).
[Crossref]

V. E. Roman and J. Popp, “In situ microparticle diagnostic by stimulated Raman scattering,” Phys. Chem. Chem. Phys. 1, 5491–5495 (1999).
[Crossref]

Rushforth, C. K.

Saar, B. G.

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

Santarpia, J. L.

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Sayer, R. M.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
[Crossref]

Schaschek, K.

K. Schaschek, J. Popp, and W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[Crossref]

Schweiger, G.

Serpenguzel, A.

Shabshelowitz, A.

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

Snow, J. B.

Souyri, A.

Srinivasan, S.

J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
[Crossref]

Symes, R.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
[Crossref]

Thompson, K. C.

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref]

Thurn, R.

Treuel, L.

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

Wang, C.

Z. Gong, Y. L. Pan, and C. Wang, “Optical configuration for photophoretic trap of single particles in air,” Rev. Sci. Instrum. 87, 103104 (2016).
[Crossref]

C. Wang, Y. L. Pan, S. C. Hill, and B. Redding, “Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air,” J. Quant. Spectrosc. Radiat. Transfer 153, 4–12 (2015).
[Crossref]

B. Redding, S. C. Hill, D. Alexson, C. Wang, and Y. L. Pan, “Photophoretic trapping of airborne particles using ultraviolet illumination,” Opt. Express 23, 3630–3639 (2015).
[Crossref]

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

Ward, A. D.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref]

Willison, S. A.

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Wriedt, T.

W. Hergert and T. Wriedt, The Mie Theory Basics and Applications, Springer Series in Optical Sciences (Springer, 2012), Vol. 169.

Zhang, Y. H.

Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
[Crossref]

Zhong-Bo, W.

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

Zun-Yao, W.

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

Aerosol Sci. Technol. (3)

E. J. Davis, “A history of single particle levitation,” Aerosol Sci. Technol. 26, 212–254 (1997).
[Crossref]

R. L. Aggarwal, S. Di Cessa, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, “Sensitive detection and identification of isovanillin aerosol particles at a Pg/cm3 mass concentration level using Raman spectroscopy,” Aerosol Sci. Technol. 49, 753–756 (2015).
[Crossref]

J. F. Owen, R. K. Chang, and P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Anal. Chim. Acta (1)

A. B. Kanu, P. E. Haigh, and H. H. Hill, “Surface detection of chemical warfare agent simulants and degradation products,” Anal. Chim. Acta 553, 148–159 (2005).
[Crossref]

Annu. Rev. Phys. Chem. (1)

J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (2)

Y.-L. Pan, C. Wang, S. C. Hill, M. Coleman, L. A. Beresnev, and J. L. Santarpia, “Trapping of individual airborne absorbing particles using a counterflow nozzle and photophoretic trap for continuous sampling and analysis,” Appl. Phys. Lett. 104, 113507 (2014).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Chin. J. Struct. Chem. (1)

W. Meng, G. Jin-Ju, W. Zhong-Bo, and W. Zun-Yao, “FT-IR, Raman and NMR spectra, molecular geometry, vibrational assignments, Ab initio and density functional theory calculations for diethyl phthalate,” Chin. J. Struct. Chem. 32, 890–902 (2013).

Environ. Sci. Technol. (1)

R. N. Berglund and B. Y. H. Liu, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

Faraday Discuss. (1)

J. R. Butler, L. Mitchem, K. L. Hanford, L. Treuel, and J. P. Reid, “In situ comparative measurements of the properties of aerosol droplets of different chemical composition,” Faraday Discuss. 137, 351–366; discussion 403-324 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

M. D. King, K. C. Thompson, and A. D. Ward, “Laser tweezers Raman study of optically trapped aerosol droplets of seawater and oleic acid reacting with ozone: implications for cloud-droplet properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

V. V. Devarakonda and A. K. Ray, “Determination of thermodynamic parameters from evaporation of binary microdroplets of volatile constituents,” J. Colloid Interface Sci. 221, 104–113 (2000).
[Crossref]

J. Hazard. Mater. (1)

J. Lavoie, S. Srinivasan, and R. Nagarajan, “Using cheminformatics to find simulants for chemical warfare agents,” J. Hazard. Mater. 194, 85–91 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (2)

Y. H. Zhang, M. Y. Choi, and C. K. Chak, “Relating hygroscopic properties of magnesium nitrate to the formation of contact ion pairs,” J. Phys. Chem. A 108, 1712–1718 (2004).
[Crossref]

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. Gilham, R. L. Johnston, and J. P. Reid, “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” J. Phys. Chem. A 110, 8116–8125 (2006).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Wang, Y. L. Pan, S. C. Hill, and B. Redding, “Photophoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in air,” J. Quant. Spectrosc. Radiat. Transfer 153, 4–12 (2015).
[Crossref]

J. Raman Spectrosc. (1)

K. Schaschek, J. Popp, and W. Kiefer, “Observation of morphology-dependent input and output resonances in time-dependent Raman spectra of optically levitated microdroplets,” J. Raman Spectrosc. 24, 69–75 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (2)

V. E. Roman and J. Popp, “In situ microparticle diagnostic by stimulated Raman scattering,” Phys. Chem. Chem. Phys. 1, 5491–5495 (1999).
[Crossref]

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487. (2004).
[Crossref]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of radiation-pressure trapping of particles by alternating light beams,” Phys. Rev. Lett. 54, 1245–1248 (1985).
[Crossref]

Rev. Sci. Instrum. (3)

M. Kriek, C. Neylon, P. L. Roach, I. P. Clark, and A. W. Parker, “A simple setup for the study of microvolume frozen samples using Raman spectroscopy,” Rev. Sci. Instrum. 76, 104301 (2005).
[Crossref]

Z. Gong, Y. L. Pan, and C. Wang, “Optical configuration for photophoretic trap of single particles in air,” Rev. Sci. Instrum. 87, 103104 (2016).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[Crossref]

Other (8)

L. V. Lorenz, “Oeuvres scientifiques de L. Lorenz,” in Revues Et Annotées, H. Valentiner, ed. (Librairie lehman & Stage, 1898).

W. Hergert and T. Wriedt, The Mie Theory Basics and Applications, Springer Series in Optical Sciences (Springer, 2012), Vol. 169.

G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011).

R. L. Aggarwal, L. W. Farrar, B. G. Saar, T. H. Jeys, and R. B. Goodman, “Measurement of the absolute Raman cross sections of diethyl phthalate, dimethyl phthalate, ethyl cinnamate, propylene caronate, tripropyl phosphate, 1, 3-cyclohexanedion, 3’-aminoacetaphenone, diethyl acetamidomalonate, isovanillin, lactide, meldrum’s acid, P-tolyl sulfoxide and vanillin,” (Massachusetts Institute of Technology, 2013).

M. L. Good, “A proposed particle containment device,” (California University, 1953).

V. Miller and M. Hogan, Health Effects of Project Shad Chemical Agent: Diethylphthalate (National Academies Silver Spring, 2004).

OPCW, “Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction,” (1993), https://www.opcw.org// .

K. K. Kroening, R. N. Easter, D. D. Richardson, S. A. Willison, and J. A. Caruso, Analysis of Chemical Warfare Degradation Products (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the experimental setup for a laser-trapping single-particle Raman spectroscopic system. M i : mirror, L i : lens, PH: pin hole, D P i : diaphragm, A L i : axicon lens, O: objective lens, GC: glass cell, BS: beam splitter, LF: long-pass filter, EM-CCD: electron multiplying charge coupled device, PMT: photomultiplier tube.
Fig. 2.
Fig. 2. Raman scattering spectra of diethyl phthalate from a single laser-trapped 21 μm microdroplet in the air (blue trace) or bulk liquid (red trace) in a cuvette. The recording integration time for each spectrum is 2 s.
Fig. 3.
Fig. 3. Time evolution of the Raman spectrum of an optically trapped (a) DEPh and (b) glycerol microdroplet. Spectra were continuously recorded for about an hour at a 1 min interval with a 2 s integration time as the particle size changed from about 20 μm to about 17 μm in diameter.
Fig. 4.
Fig. 4. (a) Typical Raman scattering spectra of a laser-trapped single diethyl phthalate (DEPh, black colored) and glycerol (red colored) microdroplet. (b) The observed WGMs over the O-H stretch vibrational band in a portion of the Raman spectrum of a laser-trapped microdroplet of glycerol. The plot depicts evaporation over a period of 120 min, where single scans were continuously taken at a 2 min interval. The WGM peaks over the O-H stretch mode shifted to the blue as the microdroplet size decreased during the evaporation process, while the spontaneous and stimulated Raman peak frequencies were unaffected during the particle size changing process.
Fig. 5.
Fig. 5. Comparison between the experimental and calculated resonance spectra of the elastic scattering intensity at 90° from a laser-trapped diethyl phthalate microdroplet from 19.8 μm to 19.15 μm in diameter.

Tables (1)

Tables Icon

Table 1. Raman Shift Frequencies of Diethyl Phthalate, in Comparison with Results from Previous Works

Metrics