Abstract

We propose a color-image reconstruction method for two-wavelength digital holography using generalized phase-shifting digital holography (GPSDH). In this method, color interference fringes are captured by a digital camera with a Bayer array color filter, and phase shifting is simultaneously performed for all wavelengths. Color interference fringes are separated into three monochromatic interference fringes using a color-separation method that suppresses the color-filter crosstalk. The object wave is extracted from each monochromatic interference fringe using GPSDH, which prevents problems due to the phase shift wavelength dependence. Image reconstruction is performed using a shifted Fresnel transform-based method, in which the color reconstructed image is obtained by directly superposing the reconstructed images for all wavelengths. We verify the proposed method through optical experiments with a two-wavelength digital holography system. The results show that the dual-color image can be successfully reconstructed without chromatic aberration.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [Crossref]
  3. C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812–4820 (1999).
    [Crossref]
  4. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  5. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  6. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).
    [Crossref]
  7. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  8. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 547–666.
  9. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108–1110 (2002).
    [Crossref]
  10. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
    [Crossref]
  11. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11, 767–774 (2003).
    [Crossref]
  12. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  13. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Appl. Opt. 49, 320–328 (2010).
    [Crossref]
  14. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
    [Crossref]
  15. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008).
    [Crossref]
  16. B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
    [Crossref]
  17. D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
    [Crossref]
  18. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
    [Crossref]
  19. H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
    [Crossref]
  20. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004).
    [Crossref]
  21. P. Picart, P. Tankam, D. Mounier, Z. Peng, and J. Li, “Spatial bandwidth extended reconstruction for digital color Fresnel holograms,” Opt. Express 17, 9145–9156 (2009).
    [Crossref]
  22. P. Picart and P. Tankam, “Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography,” Appl. Opt. 52, A240–A253 (2013).
    [Crossref]
  23. M. Leclercq and P. Picart, “Method for chromatic error compensation in digital color holographic imaging,” Opt. Express 21, 26456–26467 (2013).
    [Crossref]
  24. N. Yoshikawa, “Phase determination method in statistical generalized phase-shifting digital holography,” Appl. Opt. 52, 1947–1953 (2013).
    [Crossref]
  25. N. Yoshikawa and K. Kajihara, “Statistical generalized phase-shifting digital holography with a continuous fringe-scanning scheme,” Opt. Lett. 40, 3149–3152 (2015).
    [Crossref]
  26. N. Yoshikawa, T. Shiratori, and K. Kajihara, “Robust phase-shift estimation method for statistical generalized phase-shifting digital holography,” Opt. Express 22, 14155–14165 (2014).
    [Crossref]
  27. R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction for computational holography,” Opt. Express 15, 5631–5640 (2007).
    [Crossref]
  28. D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
    [Crossref]
  29. P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
    [Crossref]
  30. L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003).
    [Crossref]
  31. L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett. 29, 183–185 (2004).
    [Crossref]

2015 (1)

2014 (1)

2013 (3)

2012 (1)

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

2007 (3)

2006 (1)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (2)

2002 (2)

1999 (3)

1998 (1)

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[Crossref]

1997 (1)

1994 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Alfieri, D.

Bruning, J. H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 547–666.

Cai, L. Z.

Caspi, D.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[Crossref]

Charrière, F.

Chiang, F.-P.

P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[Crossref]

Colomb, T.

Coppola, G.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Cuche, E.

De Nicola, S.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Demoli, N.

Depeursinge, C.

Desse, J. M.

Di, J.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008).
[Crossref]

Emery, Y.

Ferraro, P.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Finizio, A.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Grilli, S.

Hong, S.-H.

Hu, Q.

P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[Crossref]

Huang, P. S.

P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[Crossref]

Javidi, B.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

Jiang, H.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008).
[Crossref]

Jin, F.

P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[Crossref]

Jüptner, W.

Kajihara, K.

Kato, J.

Kemper, B.

Kiryati, N.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[Crossref]

Kühn, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Leclercq, M.

Li, J.

Li, J. C.

Liu, Q.

Marquet, P.

Matsumura, T.

Montfort, F.

Mounier, D.

Muffoletto, R. P.

Murata, S.

Nitanai, E.

Nomura, T.

Numata, T.

Osten, W.

Peng, Z.

Picart, P.

Pierattini, G.

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Sansone, L.

Schnars, U.

Schreiber, H.

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 547–666.

Seebacher, S.

Shamir, J.

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[Crossref]

Shiratori, T.

Tankam, P.

Tohline, J. E.

Torzynski, M.

Tyler, J. M.

von Bally, G.

Vukicevic, D.

Wagner, C.

Yamaguchi, I.

Yang, X. L.

Yaroslavsky, L. P.

Yoshikawa, N.

Zhang, F.

Zhang, T.

Zhao, J.

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16, 2514–2519 (2008).
[Crossref]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color structured light,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 470–480 (1998).
[Crossref]

Opt. Commun. (2)

D. Alfieri, G. Coppola, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, B. Javidi, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, and B. Javidi, “Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength,” Opt. Commun. 260, 113–116 (2006).
[Crossref]

H. Jiang, J. Zhao, and J. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

Opt. Eng. (1)

P. S. Huang, Q. Hu, F. Jin, and F.-P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt. Eng. 38, 1065–1071 (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (11)

I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108–1110 (2002).
[Crossref]

J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
[Crossref]

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]

B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004).
[Crossref]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, “Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations,” Opt. Lett. 30, 2706–2708 (2005).
[Crossref]

N. Yoshikawa and K. Kajihara, “Statistical generalized phase-shifting digital holography with a continuous fringe-scanning scheme,” Opt. Lett. 40, 3149–3152 (2015).
[Crossref]

L. Z. Cai, Q. Liu, and X. L. Yang, “Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps,” Opt. Lett. 28, 1808–1810 (2003).
[Crossref]

L. Z. Cai, Q. Liu, and X. L. Yang, “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett. 29, 183–185 (2004).
[Crossref]

Other (1)

H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), pp. 547–666.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Optical setup for two-wavelength PSDH: beam splitter (BS), mirror (M), moving mirror (MM), and object (OBJ). The inset shows the color object.

Fig. 2.
Fig. 2.

Flowchart of proposed method using two-wavelength PSDH.

Fig. 3.
Fig. 3.

Wavelength-compensated image reconstruction based on SFT; (a)  M R = M G = M ; (b)  M R = M , M G = M ( λ G / λ R ) .

Fig. 4.
Fig. 4.

Color interference fringe and its magnified version: (a) color interference fringe generated by the He–Ne and Nd–YAG lasers; (b) magnified image corresponding to the central square area in (a). The images are presented in Bayer raw format.

Fig. 5.
Fig. 5.

Interference fringes in red and green channels and synthesized color fringes for (a)–(c) conventional color-separation method and (d)–(f) proposed method (contrast scheme).

Fig. 6.
Fig. 6.

Distortion factors in red (left) and green (right) channels.

Fig. 7.
Fig. 7.

Reconstructed images in red and green channels and a synthesized color reconstructed image obtained by (a)–(c) conventional color-separation method and (d)–(f) proposed method (contrast scheme).

Fig. 8.
Fig. 8.

Cross-sectional view of crosstalk components in red and green channels for (a) conventional color-separation method and (b) proposed method (contrast scheme).

Fig. 9.
Fig. 9.

Reconstructed images without wavelength compensation: (a) He–Ne laser image, (b) Nd–YAG laser image, (c) color image obtained by the direct superposition of (a) and (b), and (d) magnified view of the color image.

Fig. 10.
Fig. 10.

Wavelength-compensated reconstructed images: (a) He–Ne laser image, (b) Nd–YAG laser image, (c) color image obtained by the direct superposition of (a) and (b), and (d) magnified view of the color image.

Fig. 11.
Fig. 11.

Correlation coefficient between the reconstructed images in red and green channels.

Tables (1)

Tables Icon

Table 1. Peak-to-Valley, Average and Variance of Crosstalk Components in Red and Green Channels for the Conventional and Proposed Color-Separation Methods

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I = n = 1 N I n = n = 1 N ( | O n | 2 + | R n | 2 + O n R n * + O n * R n ) ,
( I R I G I B ) = ( t RR t RG t RB t GR t GG t GB t BR t BR t BB ) ( I R I G I B ) ,
O = e i ϕ 0 { ( 1 e i Δ ϕ 20 ) Δ I 01 + ( 1 e i Δ ϕ 01 ) Δ I 20 } 2 i | R | ( sin Δ ϕ 01 + sin Δ ϕ 12 + sin Δ ϕ 20 ) ,
Δ ϕ p q = arccos { 1 κ | Δ I p q | 2 } ,
f ( κ ) = c 01 Δ ϕ 01 + c 12 Δ ϕ 12 + c 20 Δ ϕ 20 ,
Δ ϕ p q = c ^ p q arccos { 1 κ 0 | Δ I p q | 2 } ,
U ( p , q ) = C ( p , q ) r = 0 N 1 s = 0 N 1 u ˜ ( r , s ) exp [ i 2 π ( m x p r + m y q s ) ] ,
C ( p , q ) = exp ( i k d ) i λ d exp [ i π λ d ( X p 2 + Y q 2 ) ] × exp [ i 2 π λ d ( p x 0 Δ X + q y 0 Δ Y ) ] ,
u ˜ ( r , s ) = u ( r , s ) exp [ i π λ d ( x r 2 + y s 2 ) ] exp [ i 2 π λ d ( x r X 0 + y s Y 0 ) ] ,
M i = M λ i λ R ,
C = p q ( I R ( p , q ) I ¯ R ) ( I G ( p , q ) I ¯ G ) p q ( I R ( p , q ) I ¯ R ) 2 p q ( I G ( p , q ) I ¯ G ) 2 ,

Metrics