Abstract

The contaminant detection in water distribution systems is essential to protect public health from potentially harmful compounds resulting from accidental spills or intentional releases. As a noninvasive optical technique, ultraviolet-visible (UV-Vis) spectroscopy is investigated for detecting contamination events. However, current methods for event detection exhibit the shortcomings of noise susceptibility. In this paper, a new method that has less sensitivity to noise was proposed to detect water quality contamination events by analyzing the complexity of the UV-Vis spectrum series. The proposed method applied approximate entropy (ApEn) to measure spectrum signals’ complexity, which made a distinction between normal and abnormal signals. The impact of noise was attenuated with the help of ApEn’s insensitivity to signal disturbance. This method was tested on a real water distribution system data set with various concentration simulation events. Results from the experiment and analysis show that the proposed method has a good performance on noise tolerance and provides a better detection result compared with the autoregressive model and sequential probability ratio test.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Distribution water quality anomaly detection from UV optical sensor monitoring data by integrating principal component analysis with chi-square distribution

Dibo Hou, Jian Zhang, Zheling Yang, Shu Liu, Pingjie Huang, and Guangxin Zhang
Opt. Express 23(13) 17487-17510 (2015)

Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time–frequency analysis

Amelia Lavinia Ricchiuti and Salvador Sales
Appl. Opt. 55(5) 1054-1060 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription