Abstract

The liquid crystal spatial light modulator (SLM) is able to provide flexible wavefront control, whereas the initial phase and its response distortions will heavily influence the modulation accuracy. The currently existing calibration methods are tedious and time consuming. A novel multi-region calibration method for minimizing those distortions is proposed. The entire panel is divided into several local regions based on the similarity of phase response characteristic. The nonlinear phase response and static phase distortion of each local region are calibrated in the iterative division procedure. The calibration method is theoretically analyzed and experimentally verified. For the Jasper 4 K SLM panel, when five local regions are built, the root mean error of linear phase shifts is reduced to 0.1 rad and the compensation accuracy of the static phase distortion reaches 0.24 wavelength. The calibrated SLM is applied for the color holographic display and the results show that the reconstructed image quality is improved significantly. The proposed method is simpler and faster because of the reasonable regional division and lower calibration complexity. It could be used for the calibration of various phase only or complex modulators with high space bandwidth product in the future.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear dynamic phase response calibration by digital holographic microscopy

Lei Yang, Jun Xia, Chenliang Chang, Xiaobing Zhang, Zhiming Yang, and Jianhong Chen
Appl. Opt. 54(25) 7799-7806 (2015)

Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré
Appl. Opt. 46(23) 5667-5679 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription