Abstract

A rotational multiview depth-fused 3D (DFD) display and 360-deg displaying optics using a spatially imaged iris method are proposed to realize a 360-deg 3D image. This method enables displaying clear floating images in a crystal ball. Its symmetric optics provide clear and natural 360-deg images with smooth motion parallax in horizontal and vertical directions using the directional selectivity of a spatially imaged iris method and natural 3D images of a rotational multiview DFD display.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Integral volumetric imaging using decentered elemental lenses

Shimpei Sawada and Hideki Kakeya
Opt. Express 20(23) 25902-25913 (2012)

Liquid-crystal-display-based touchable light field three-dimensional display using display-capture mapping calibration

Yifan Peng, Haifeng Li, Qing Zhong, and Xu Liu
Appl. Opt. 51(25) 6014-6019 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Ishikawa Optics & Arts Corp., “Crystal display,” http://www.holoart.co.jp/fan01.html , https://www.youtube.com/watch?v=9qUdbrfzBNk [in Japanese].
  2. Y. Kim, J. Park, H. Choi, S. Jung, S. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
    [Crossref]
  3. Y. Lim, K. Hong, H. Kim, H. Kim, E. Chang, S. Lee, T. Kim, J. Nam, H. Choo, J. Kim, and J. Hahn, “360-deg tabletop electronic holographic display,” Opt. Express 24, 24999–25009 (2016).
    [Crossref]
  4. Y. Takaki and S. Uchida, “Table screen 360-deg three-dimensional display using a small array of high-speed projectors,” Opt. Express 22, 8848–8861 (2012).
    [Crossref]
  5. S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).
  6. S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
    [Crossref]
  7. M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).
  8. T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).
  9. T. Ishinabe, T. Kawakami, and T. Uchida, “High-resolution floating autostereoscopic 3D display based on iris-plane-dividing technology,” in SID International Symposium Digest, Boston, Massachusetts, 5June2012, pp. 225–228.
  10. T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).
  11. M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).
  12. M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.
  13. T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).
  14. https://commons.wikimedia.org/wiki/User:Ed_g2s/Dice.pov .

2016 (1)

2015 (1)

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

2014 (2)

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

2012 (1)

Y. Takaki and S. Uchida, “Table screen 360-deg three-dimensional display using a small array of high-speed projectors,” Opt. Express 22, 8848–8861 (2012).
[Crossref]

2010 (3)

S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

2004 (2)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Y. Kim, J. Park, H. Choi, S. Jung, S. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421–429 (2004).
[Crossref]

Ando, H.

S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).

Andoh, Y.

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

Chang, E.

Choi, H.

Choo, H.

Date, M.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.

Fujikake, H.

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

Hahn, J.

Hong, K.

Ishinabe, T.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

T. Ishinabe, T. Kawakami, and T. Uchida, “High-resolution floating autostereoscopic 3D display based on iris-plane-dividing technology,” in SID International Symposium Digest, Boston, Massachusetts, 5June2012, pp. 225–228.

Jung, S.

Kano, M.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

Kawakami, T.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

T. Ishinabe, T. Kawakami, and T. Uchida, “High-resolution floating autostereoscopic 3D display based on iris-plane-dividing technology,” in SID International Symposium Digest, Boston, Massachusetts, 5June2012, pp. 225–228.

M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.

Kim, H.

Kim, J.

Kim, T.

Kim, Y.

Lee, B.

Lee, S.

Lim, Y.

Matsuura, N.

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

Mieda, S.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

Min, S.

Nam, J.

Nasu, S.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

Nishizawa, M.

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

Ohtani, Y.

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

Ohtsuka, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Ozawa, S.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

Park, J.

Sakai, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Sasai, M.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.

Suyama, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Suzuki, Y.

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

Takada, H.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.

Takahashi, N.

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

Takaki, Y.

Y. Takaki and S. Uchida, “Table screen 360-deg three-dimensional display using a small array of high-speed projectors,” Opt. Express 22, 8848–8861 (2012).
[Crossref]

Uchida, S.

Y. Takaki and S. Uchida, “Table screen 360-deg three-dimensional display using a small array of high-speed projectors,” Opt. Express 22, 8848–8861 (2012).
[Crossref]

Uchida, T.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

T. Ishinabe, T. Kawakami, and T. Uchida, “High-resolution floating autostereoscopic 3D display based on iris-plane-dividing technology,” in SID International Symposium Digest, Boston, Massachusetts, 5June2012, pp. 225–228.

Uehira, K.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Yano, S.

S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).

Yao, Y.

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

Yoshida, S.

S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).

IEEE J. Display Technol. (1)

T. Kawakami, T. Ishinabe, M. Sasai, M. Kano, S. Nasu, T. Uchida, S. Ozawa, S. Mieda, Y. Yao, M. Date, and H. Takada, “Large high-definition multiview display system capable of controlling observation area,” IEEE J. Display Technol. 11, 403–411 (2015).

ITE Trans. MTA (1)

T. Ishinabe, T. Kawakami, M. Nishizawa, H. Fujikake, and T. Uchida, “Floating autostereoscopic 3D projection display with high light efficiency and wide viewing depth using anisotropic light diffuser,” ITE Trans. MTA 2, 15–22 (2014).

J. Soc. Inf. Disp. (2)

M. Date, Y. Andoh, H. Takada, Y. Ohtani, and N. Matsuura, “Depth reproducibility of multiview depth-fused 3-D display,” J. Soc. Inf. Disp. 18, 470–475 (2010).

T. Ishinabe, T. Kawakami, N. Takahashi, and T. Uchida, “High-resolution autostereoscopic 3-D projection display with a space-dividing iris-plane shutter,” J. Soc. Inf. Disp. 18, 583–588 (2010).

Opt. Express (3)

SID Symp. Dig. Tech. Pap. (2)

S. Yoshida, S. Yano, and H. Ando, “Prototyping of glasses-free table-style 3D display for tabletop tasks,” SID Symp. Dig. Tech. Pap. 41, 211–214 (2010).

M. Date, T. Kawakami, M. Sasai, S. Ozawa, S. Mieda, H. Takada, Y. Suzuki, and T. Uchida, “Reflective multi-view screen and mobile projectors for communication displays,” SID Symp. Dig. Tech. Pap. 45, 892–895 (2014).

Vision Res. (1)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance modulated two 2-D images displayed at different depth,” Vision Res. 44, 785–793 (2004).
[Crossref]

Other (4)

M. Date, T. Kawakami, M. Sasai, and H. Takada, “Luminance profile control method using gradation iris for autostereoscopic 3D displays,” in Proceedings of CLEO Pacific Rim (2015), paper S26B3-6.

T. Ishinabe, T. Kawakami, and T. Uchida, “High-resolution floating autostereoscopic 3D display based on iris-plane-dividing technology,” in SID International Symposium Digest, Boston, Massachusetts, 5June2012, pp. 225–228.

https://commons.wikimedia.org/wiki/User:Ed_g2s/Dice.pov .

Ishikawa Optics & Arts Corp., “Crystal display,” http://www.holoart.co.jp/fan01.html , https://www.youtube.com/watch?v=9qUdbrfzBNk [in Japanese].

Supplementary Material (1)

NameDescription
» Visualization 1       Multiview DFD display via magnified spatially imaging iris method.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (35)

Fig. 1.
Fig. 1. Principle of smooth motion parallax using a multiview DFD display. (a) Ordinary DFD display, (b) ordinary DFD with an inclined stacking axis, and (c) multiview (two-view) DFD display.
Fig. 2.
Fig. 2. Ordinary DFD algorithm.
Fig. 3.
Fig. 3. L 1 and θ 1 in an ordinary DFD display.
Fig. 4.
Fig. 4. Observation area 2 of neighbors on both sides and an oblique multiview DFD display.
Fig. 5.
Fig. 5. First problem: narrow viewing zone of inclined observation by the fusion condition of the DFD display. The first problem causes the phenomenon which is that the larger the inclined angle of the stacking axis becomes, the smaller the angle of observation area is. (a) A large inclined angle. (b) A very large inclined angle. (c) A nearly 90 deg inclined angle.
Fig. 6.
Fig. 6. First problem of a wide-viewing multiview DFD display.
Fig. 7.
Fig. 7. Second problem: need of a large wide size display of which width is S 5 + W by the shifting distance between the rear and front images of inclined observation. The positions of the rear and front images and the shifting distance S 5 are displayed.
Fig. 8.
Fig. 8. Third problem: need of large wide size display of which horizontal size is big by the width of the viewing image of inclined observation. The width of the viewing image, W 5 , from the observer’s viewing direction is displayed.
Fig. 9.
Fig. 9. Rotational 360-deg multiview DFD display.
Fig. 10.
Fig. 10. Spherical shape side forward focal length f of a hemispherical ball lens.
Fig. 11.
Fig. 11. Imaging of a projection lens as an iris image by a ball lens and the imaging plane at the center of a ball lens.
Fig. 12.
Fig. 12. Optical system of a ball-lens-type spatially imaged iris method.
Fig. 13.
Fig. 13. Rear imaging plane of a rear displayed image in a ball lens by a Δ a 1 backward shifting display panel.
Fig. 14.
Fig. 14. Front imaging plane of the front displayed image in a ball lens by a Δ a 2 forward shifting display panel.
Fig. 15.
Fig. 15. DFD optical system of a ball-lens-type spatially imaged iris method.
Fig. 16.
Fig. 16. Rotational superimposition of the rotated rear and front imaging planes of displayed images for a DFD display at the center of a ball lens.
Fig. 17.
Fig. 17. Vertical cross section of a 360-deg rotational multiview DFD display.
Fig. 18.
Fig. 18. Upper view of the 360-deg multiview DFD display.
Fig. 19.
Fig. 19. Optical path analysis of a magnified spatially imaged iris method.
Fig. 20.
Fig. 20. Magnified imaging of a projection lens as an iris image by a ball lens and the imaging plane at the center of a ball lens.
Fig. 21.
Fig. 21. Optical system of a ball-lens-type magnified spatially imaged iris method.
Fig. 22.
Fig. 22. Rear imaging plane of the rear displayed image in a ball lens by a Δ a 1 backward shifting display panel in a magnified spatially imaged iris method.
Fig. 23.
Fig. 23. Front imaging plane of the front displayed image in a ball lens by a Δ a 2 forward shifting display panel in a magnified spatially imaged iris method.
Fig. 24.
Fig. 24. DFD optical system of a ball-lens-type magnified spatially imaged iris method.
Fig. 25.
Fig. 25. Rotational superimposition of the rotated rear and front imaging planes of displayed images for a DFD display at the center of a ball lens by a magnified spatially imaged iris method.
Fig. 26.
Fig. 26. Vertical cross section of a 360-deg multiview DFD display by a magnified spatially imaged iris method.
Fig. 27.
Fig. 27. Upper view of the 360-deg multiview DFD display by a magnified spatially imaged iris method.
Fig. 28.
Fig. 28. Upper view of the 360-deg multiview DFD display by a magnified spatially imaged iris method without optical beam lines and arrows.
Fig. 29.
Fig. 29. Two-view rotational multiview DFD display by a magnified spatially imaged iris method, which is the structure of the experimental setup.
Fig. 30.
Fig. 30. Experimental setup of the two-view rotational multiview DFD display.
Fig. 31.
Fig. 31. Displayed Images from different viewing positions. (a) Horizontal motion parallax. Left face of a yellow dice shows significant change. (b) Vertical motion parallax. Top face of the yellow dice shows significant change.
Fig. 32.
Fig. 32. Experimental setup without display panels of a 24 directional 360-deg rotational multiview DFD display.
Fig. 33.
Fig. 33. 24 directional 360-deg rotational multiview DFD display by a magnified spatially imaging iris method, which shows a swimming goldfish in a crystal ball using 48 synchronized moving images of the goldfish at different angles (see Visualization 1).
Fig. 34.
Fig. 34. 3D goldfish images in five different directions in a crystal ball lens. (a) Front 0 deg, (b) left 15    deg , (c) left 30    deg , (d) right + 15    deg , and (e) right + 30    deg (see Visualization 1).
Fig. 35.
Fig. 35. 360-deg smooth motion parallax of 3D goldfish images from 0 deg to 360 deg (see Visualization 1).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Y front ( x , y ) = ( 1 β ) Y ( x , y ) ,
Y rear ( x , y ) = β Y ( x , y ) ,
β = Z ( x , y ) Z front Z rear Z front ( 0 β 1 ) .
Y front ( x , y ) Y rear ( x , y ) = ( 1 β ) β .
n 1 sin θ 1 = n 2 sin θ 2 .
r sin ( θ 1 θ 2 ) = f + r sin ( π θ 1 ) .
f = r    n 1 n 2 n 1 .
1 a + 1 f + r = 1 f PRJ .
1 a + Δ a 1 + 1 f + r Δ b 1 = 1 f PRJ .
1 a Δ a 2 + 1 f + r + Δ b 2 = 1 f PRJ .
r sin ( θ 1 θ 2 + θ 3 ) = b + r sin ( π θ 1 ) .
b + r = r 1 n 1 n 2 + sin θ 3 sin θ 1 .
r sin ( θ 1 θ 2 θ 3 ) = c + r sin ( π θ 1 ) .
c + r = r 1 n 1 n 2 sin θ 3 sin θ 1 .
1 b + r + 1 c + r = 1 f BALL .
f BALL = r    n 2 2 ( n 2 n 1 ) .
1 a + 1 b + r = 1 f PRJ .
1 a + Δ a 1 + 1 b + r Δ b 1 = 1 f PRJ .
1 a Δ a 2 + 1 b + r + Δ b 2 = 1 f PRJ .

Metrics