Abstract

In this paper, we have developed a novel model that is named graph-regularized tensor robust principal component analysis (GTRPCA) for denoising hyperspectral images (HSIs). Incorporating spectral graph regularization into TRPCA makes the model more accurate by preserving local geometric structures embedded in a high-dimensional space. Based on tensor singular value decomposition (t-SVD), we introduce a general tensor-based altering direction method of multipliers (ADMM) algorithm which can solve the proposed model for denoising HSIs. Experiments on both the synthetic and real captured datasets have demonstrated the effectiveness of the proposed method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral image denoising using the robust low-rank tensor recovery

Chang Li, Yong Ma, Jun Huang, Xiaoguang Mei, and Jiayi Ma
J. Opt. Soc. Am. A 32(9) 1604-1612 (2015)

CP tensor-based compression of hyperspectral images

Leyuan Fang, Nanjun He, and Hui Lin
J. Opt. Soc. Am. A 34(2) 252-258 (2017)

Tensor decomposition-based sparsity divergence index for hyperspectral anomaly detection

Lili Zhang and Chunhui Zhao
J. Opt. Soc. Am. A 34(9) 1585-1594 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription