Abstract

We propose an efficient multiobjective optimization approach for a plasmonic nanoslit array sensor using Kriging surrogate models. The universal Kriging models whose regression functions are zeroth-, first-, and second-order polynomials are adopted to estimate objective functions. The multiobjective extension of the genetic algorithm is used for Pareto optimal sensor geometry. The objective functions are the figure of merit defined as a ratio of peak wavelength shift at molecular adsorption and 3 dB bandwidth of transmission spectrum, and peak transmission power, respectively. The optical properties of a plasmonic slit sensor are investigated, such as transmission power, bandwidth, and peak shift, using the finite element method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Review of numerical optimization techniques for meta-device design [Invited]

Sawyer D. Campbell, David Sell, Ronald P. Jenkins, Eric B. Whiting, Jonathan A. Fan, and Douglas H. Werner
Opt. Mater. Express 9(4) 1842-1863 (2019)

Plasmonic interferometers for label-free multiplexed sensing

Yongkang Gao, Zheming Xin, Qiaoqiang Gan, Xuanhong Cheng, and Filbert J. Bartoli
Opt. Express 21(5) 5859-5871 (2013)

Negative refractive index metamaterials aided by extraordinary optical transmission

C. García-Meca, R. Ortuño, F.J. Rodríguez-Fortuño, J. Martí, and A. Martínez
Opt. Express 17(8) 6026-6031 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription