Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models

Not Accessible

Your library or personal account may give you access

Abstract

We propose an efficient multiobjective optimization approach for a plasmonic nanoslit array sensor using Kriging surrogate models. The universal Kriging models whose regression functions are zeroth-, first-, and second-order polynomials are adopted to estimate objective functions. The multiobjective extension of the genetic algorithm is used for Pareto optimal sensor geometry. The objective functions are the figure of merit defined as a ratio of peak wavelength shift at molecular adsorption and 3 dB bandwidth of transmission spectrum, and peak transmission power, respectively. The optical properties of a plasmonic slit sensor are investigated, such as transmission power, bandwidth, and peak shift, using the finite element method.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Blue-shift of surface plasmon resonance in a metal nanoslit array structure

Yun Suk Jung, Jeff Wuenschell, Hong Koo Kim, Palwinder Kaur, and David H. Waldeck
Opt. Express 17(18) 16081-16091 (2009)

Investigation of surface plasmon resonance in super-period gold nanoslit arrays

Junpeng Guo and Haisheng Leong
J. Opt. Soc. Am. B 29(7) 1712-1716 (2012)

Asymmetric transmission of obliquely intersecting nanoslit arrays in a gold film

Yuyan Chen, Yongkai Wang, Tiankun Wang, Yongyuan Zhang, Li Wang, and Zhongyue Zhang
Appl. Opt. 56(20) 5781-5785 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.