Abstract

Due to low cost and small size, uncooled microbolometer-based thermal focal plane arrays are very attractive for radiometry. However, being non-cooled, they suffer from temporally and spatially dependent changes that require constant calibration. While the gain calibration can be reasonably realized by two-point correction, the offset due to internal radiation loads poses a complicated calibration scheme. We present a new computational optics approach that simplifies the essential calibration for temperature offset. Using two successive images of the object taken with different known blur levels, one can eliminate the object term from the image-formation equation, resulting in an equation for the unknown sensor offset. A general algebraic model is presented for the space-variant case followed by solutions using both direct inverse method and iterative solver. The new scheme allows restoration of the radiometric value within 1% error with the direct method, and 0.2% error with the iterative scheme. Account of the influence of realistic lens positioning error on restoration accuracy was given. Results using direct inverse methods for restoring the radiometric values yield restoration error with a good average error of 3.7% and less.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Joint estimation of unknown radiometric data, gain, and offset from thermal images

Shahar Papini, Peretz Yafin, Iftach Klapp, and Nir Sochen
Appl. Opt. 57(36) 10390-10401 (2018)

Radiometric calibration of tempospatially modulated polarization interference imaging spectrometer

Peng Gao, Jingjing Ai, and Chunmin Zhang
Appl. Opt. 55(35) 10016-10024 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription