Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rainbows by elliptically deformed drops. I. Möbius shift for high-order rainbows

Not Accessible

Your library or personal account may give you access

Abstract

Using ray theory, the Möbius shift of the (p1)-order rainbow angle for a particle having an elliptical cross section is obtained to first order in the ellipticity as a function of the tilt of the ellipse with respect to the propagation direction of the incoming rays. The result is then adapted to the geometry of scattering of light rays from the sun by a falling water drop as a function of sun height angle. The variation in the angular spacing between the supernumeraries is determined as a function of location along the rainbow arc, the conditions under which the rainbow angle is insensitive to drop flattening were determined, and the dependence of the Möbius shift on the drop refractive index is shown for rainbows up to fourth order (p=5).

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Möbius shifts associated with the third-order and the fourth-order rainbows of a spheroidal droplet computation

Zhiying Wang, Haitao Yu, Jie Yang, and Jianqi Shen
Appl. Opt. 61(3) 826-835 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved