Abstract

We report a phenomenon manifesting itself as brief flashes of light on the snow’s surface near a lidar beam. The flashes are imaged and interpreted as specular reflection patterns from individual ice particles. Such patterns have a two-dimensional structure and are similar to those previously observed in forward scattering. Patterns are easiest to capture from particles with well-defined horizontal facets, such as near-horizontally aligned plates. The patterns and their position can be used to determine properties such as ice particle shape, size, roughness, alignment, and altitude. Data obtained at Summit in Greenland show the presence of regular hexagonal and scalene plates, columns, and rounded plates of various sizes, among others.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies

Kenneth Sassen, Nancy C. Knight, Yoshihide Takano, and Andrew J. Heymsfield
Appl. Opt. 33(21) 4590-4601 (1994)

Laboratory study of microphysical and scattering properties of corona-producing cirrus clouds

E. Järvinen, P. Vochezer, O. Möhler, and M. Schnaiter
Appl. Opt. 53(31) 7566-7575 (2014)

Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays

Kenneth Sassen, Jiang Zhu, and Sally Benson
Appl. Opt. 42(3) 332-341 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: a way forward,” Atmos. Res. 112, 45–69 (2012).
    [Crossref]
  2. A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).
  3. K. Sassen, J. Zhu, and S. Benson, “Midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing, IV: optical displays,” Appl. Opt. 42, 332–341 (2003).
    [Crossref]
  4. M. I. Mishchenko and A. Macke, “How big should hexagonal ice crystals be to produce halos?” Appl. Opt. 38, 1626–1629 (1999).
    [Crossref]
  5. K. Sassen, N. C. Knight, Y. Takano, and A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 33, 4590–4601 (1994).
    [Crossref]
  6. Z. Ulanowski, “Ice analog halos,” Appl. Opt. 44, 5754–5758 (2005).
    [Crossref]
  7. J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
    [Crossref]
  8. Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
    [Crossref]
  9. P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
    [Crossref]
  10. G. J. Nott and T. J. Duck, “Lidar studies of the polar troposphere,” Meteorol. Appl. 18, 383–405 (2011).
    [Crossref]
  11. G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
    [Crossref]
  12. Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
    [Crossref]
  13. Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).
  14. R. Hoff, “Vertical structure of arctic haze observed by lidar,” J. Appl. Meteorol. 27, 125–139 (1988).
    [Crossref]
  15. V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
    [Crossref]
  16. Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
    [Crossref]
  17. R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
    [Crossref]
  18. R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
    [Crossref]
  19. M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
    [Crossref]
  20. M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
    [Crossref]
  21. K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
    [Crossref]
  22. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
    [Crossref]
  23. E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
    [Crossref]
  24. L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).
  25. J. Nelson, “Sublimation of ice crystals,” J. Atmos. Sci. 55, 910–919 (1998).
    [Crossref]
  26. B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
    [Crossref]
  27. D. L. Mitchell, “Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities,” J. Atmos. Sci. 53, 1710–1723 (1996).
    [Crossref]
  28. D. Lamb and P. Hobbs, “Growth rates and habits of ice crystals grown from the vapor phase,” J. Atmos. Sci. 28, 1506–1509 (1971).
    [Crossref]

2015 (2)

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

2014 (2)

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

2013 (2)

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

2012 (4)

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: a way forward,” Atmos. Res. 112, 45–69 (2012).
[Crossref]

M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
[Crossref]

2011 (3)

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

G. J. Nott and T. J. Duck, “Lidar studies of the polar troposphere,” Meteorol. Appl. 18, 383–405 (2011).
[Crossref]

2010 (1)

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

2009 (1)

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

2008 (1)

2005 (1)

2003 (1)

1999 (1)

1998 (2)

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

J. Nelson, “Sublimation of ice crystals,” J. Atmos. Sci. 55, 910–919 (1998).
[Crossref]

1996 (1)

D. L. Mitchell, “Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities,” J. Atmos. Sci. 53, 1710–1723 (1996).
[Crossref]

1994 (1)

1988 (1)

R. Hoff, “Vertical structure of arctic haze observed by lidar,” J. Appl. Meteorol. 27, 125–139 (1988).
[Crossref]

1971 (1)

D. Lamb and P. Hobbs, “Growth rates and habits of ice crystals grown from the vapor phase,” J. Atmos. Sci. 28, 1506–1509 (1971).
[Crossref]

Alvarez, C.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

Baran, A. J.

A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: a way forward,” Atmos. Res. 112, 45–69 (2012).
[Crossref]

Bennartz, R.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Benson, S.

Bourdages, L.

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Brown, P.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Busen, R.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Cadeddu, M.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Castellani, B.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Collier, C. T.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Connolly, P.

Cotton, R. J.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Cox, C.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Cziczo, D.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

DeMott, P. J.

Dobbie, S.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

Drummond, J. R.

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Duck, T.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Duck, T. J.

G. J. Nott and T. J. Duck, “Lidar studies of the polar troposphere,” Meteorol. Appl. 18, 383–405 (2011).
[Crossref]

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Eloranta, E.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Eloranta, E. W.

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Fogal, P. F.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Franklin, C.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Fu, Q.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Galileyskii, V. P.

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

Gayet, J. F.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Gourbeyre, C.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Greenaway, R.

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

Greenaway, R. S.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
[Crossref]

Hardesty, R.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

Hayman, M.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
[Crossref]

Hesse, E.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
[Crossref]

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Heymsfield, A.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Heymsfield, A. J.

Hirst, E.

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
[Crossref]

Hobbs, P.

D. Lamb and P. Hobbs, “Growth rates and habits of ice crystals grown from the vapor phase,” J. Atmos. Sci. 28, 1506–1509 (1971).
[Crossref]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

Hoff, R.

R. Hoff, “Vertical structure of arctic haze observed by lidar,” J. Appl. Meteorol. 27, 125–139 (1988).
[Crossref]

Hudak, D.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Kaye, P. H.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
[Crossref]

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Knight, N. C.

Krämer, M.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Kropfli, R.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Kulie, M.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Kuzmenkov, D. O.

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

Lamb, D.

D. Lamb and P. Hobbs, “Growth rates and habits of ice crystals grown from the vapor phase,” J. Atmos. Sci. 28, 1506–1509 (1971).
[Crossref]

Lawson, P.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Lesins, G.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Lohmann, U.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Luebke, A.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Macke, A.

Mariani, Z.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Marichev, V. N.

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

Marshak, A.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Martner, B.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

McFarquhar, G. M.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Miller, N.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Minikin, A.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Mioche, G.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Mishchenko, M. I.

Mitchell, D. L.

D. L. Mitchell, “Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities,” J. Atmos. Sci. 53, 1710–1723 (1996).
[Crossref]

Moran, K.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Morozov, A. M.

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

Murray, B.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

Neely, R.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Neely, R. R.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

Neff, W.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Nelson, J.

J. Nelson, “Sublimation of ice crystals,” J. Atmos. Sci. 55, 910–919 (1998).
[Crossref]

Nott, G. J.

G. J. Nott and T. J. Duck, “Lidar studies of the polar troposphere,” Meteorol. Appl. 18, 383–405 (2011).
[Crossref]

Nousiainen, T.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

O’Neill, M.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

Palm, S. P.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Pentillä, A.

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Penttilä, A.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Post, M.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Rowe, P.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Salzmann, C.

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

Sassen, K.

Saunders, C.

Shcherbakov, V.

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Shupe, M.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

Shupe, M. D.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

Stillwell, R.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

Stillwell, R. A.

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

Strong, K.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Takano, Y.

Taylor, L.

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Thayer, J.

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

Thayer, J. P.

M. Hayman and J. P. Thayer, “General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices,” J. Opt. Soc. Am. A 29, 400–409 (2012).
[Crossref]

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

Turner, D.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Turner, D. S.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Ulanowski, Z.

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

P. H. Kaye, E. Hirst, R. S. Greenaway, Z. Ulanowski, E. Hesse, P. J. DeMott, C. Saunders, and P. Connolly, “Classifying atmospheric ice crystals by spatial light scattering,” Opt. Lett. 33, 1545–1547 (2008).
[Crossref]

Z. Ulanowski, “Ice analog halos,” Appl. Opt. 44, 5754–5758 (2005).
[Crossref]

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Van Tricht, K.

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

Walden, V.

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Walden, V. P.

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Welsh, D.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Widener, K.

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Wolff, M.

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Wu, D. L.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Yang, Y.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Yu, H.

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

Zhu, J.

Appl. Opt. (4)

Atmos. Chem. Phys. (3)

J. F. Gayet, G. Mioche, V. Shcherbakov, C. Gourbeyre, R. Busen, and A. Minikin, “Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment,” Atmos. Chem. Phys. 11, 2537–2544 (2011).
[Crossref]

Z. Ulanowski, P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, “Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements,” Atmos. Chem. Phys. 14, 1649–1662 (2014).
[Crossref]

G. Lesins, L. Bourdages, T. J. Duck, J. R. Drummond, E. W. Eloranta, and V. P. Walden, “Large surface radiative forcing from topographic blowing snow residuals measured in the High Arctic at Eureka,” Atmos. Chem. Phys. 9, 1847–1862 (2009).
[Crossref]

Atmos. Meas. Tech. (1)

Z. Mariani, K. Strong, M. Wolff, P. Rowe, V. Walden, P. F. Fogal, T. Duck, G. Lesins, D. S. Turner, C. Cox, and E. Eloranta, “Infrared measurements in the Arctic using two atmospheric emitted radiance interferometers,” Atmos. Meas. Tech. 5, 329–344 (2012).

Atmos. Ocean Opt. (1)

V. N. Marichev, V. P. Galileyskii, D. O. Kuzmenkov, and A. M. Morozov, “Experimental observation of the mirror reflection of laser radiation from oriented particles concentrated in the atmospheric layer,” Atmos. Ocean Opt. 23, 128–131 (2010).
[Crossref]

Atmos. Res. (1)

A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: a way forward,” Atmos. Res. 112, 45–69 (2012).
[Crossref]

Bull. Am. Meteor. Soc. (1)

K. Moran, B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, “An unattended cloud-profiling radar for use in climate research,” Bull. Am. Meteor. Soc. 79, 443–455 (1998).
[Crossref]

Bull. Am. Meteorol. Soc. (2)

M. Shupe, D. Turner, V. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. Neely, W. Neff, and P. Rowe, “High and dry: new observations of tropospheric and cloud properties above the Greenland ice sheet,” Bull. Am. Meteorol. Soc. 94, 169–186 (2013).
[Crossref]

B. Murray, C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, “Trigonal ice crystals in Earth’s atmosphere,” Bull. Am. Meteorol. Soc. 96, 1519–1531 (2015).
[Crossref]

Geophys. Res. Lett. (1)

Y. Yang, S. P. Palm, A. Marshak, D. L. Wu, H. Yu, and Q. Fu, “First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica,” Geophys. Res. Lett. 41, 730–735 (2014).
[Crossref]

J. Appl. Meteorol. (1)

R. Hoff, “Vertical structure of arctic haze observed by lidar,” J. Appl. Meteorol. 27, 125–139 (1988).
[Crossref]

J. Atmos. Ocean. Technol. (1)

R. Neely, M. Hayman, R. Stillwell, J. Thayer, R. Hardesty, M. O’Neill, M. Shupe, and C. Alvarez, “Polarization Lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30, 1635–1655 (2013).
[Crossref]

J. Atmos. Sci. (3)

D. L. Mitchell, “Use of mass-and area-dimensional power laws for determining precipitation particle terminal velocities,” J. Atmos. Sci. 53, 1710–1723 (1996).
[Crossref]

D. Lamb and P. Hobbs, “Growth rates and habits of ice crystals grown from the vapor phase,” J. Atmos. Sci. 28, 1506–1509 (1971).
[Crossref]

J. Nelson, “Sublimation of ice crystals,” J. Atmos. Sci. 55, 910–919 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

Z. Ulanowski, E. Hirst, P. H. Kaye, and R. Greenaway, “Retrieving the size of particles with rough and complex surfaces from two-dimensional scattering patterns,” J. Quant. Spectrosc. Radiat. Transfer 113, 2457–2464 (2012).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

E. Hesse, C. T. Collier, A. Penttilä, T. Nousiainen, Z. Ulanowski, and P. H. Kaye, “Modelling light scattering by absorbing smooth and slightly rough facetted particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
[Crossref]

Meteorol. Appl. (1)

G. J. Nott and T. J. Duck, “Lidar studies of the polar troposphere,” Meteorol. Appl. 18, 383–405 (2011).
[Crossref]

Opt. Lett. (1)

Other (3)

A. Heymsfield, M. Krämer, P. Brown, D. Cziczo, C. Franklin, P. Lawson, U. Lohmann, A. Luebke, G. M. McFarquhar, Z. Ulanowski, and K. Van Tricht, “Cirrus clouds,” Meteorological Monographs (in press).

R. A. Stillwell, R. R. Neely, J. P. Thayer, M. D. Shupe, and M. O’Neill, “Low-level, liquid-only and mixed-phase cloud identification by polarimetric lidar,” Atmos. Meas. Tech. Discuss. (2016).
[Crossref]

L. Taylor, E. Hesse, A. Pentillä, Z. Ulanowski, T. Nousiainen, and P. H. Kaye, “A beam tracing model applied to transparent, smooth hexagonal columns. Comparisons to ADDA,” (in preparation).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (2218 KB)      Time-lapse video of 2500 images photographed at Summit on the 6th December 2016 from 1851 to 2110 UTC

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Scattering from a lidar beam onto snow: 30 superimposed images, 1.3 s exposure time each. Recorded on 6 December 2016. The lidar hut is located behind and to the right of the camera, as shown in Fig. 2.

Fig. 2.
Fig. 2.

Cartesian coordinate system for locating the 2-D patterns. The snow surface is on the X Y ( Z = 0 ) plane, and the lidar beam is on the Y Z ( X = 0 ) plane. Point A is the location of a specular reflection for a horizontal ice plate, B for a plate tilted about the Y -axis, C the location of the camera ( X = 3 , Y = 4.5 , Z = 1.5    m ), D the lidar aperture ( X = 0 , Y = 2.5 , Z = 4    m ), and E the footprint of the lidar hut.

Fig. 3.
Fig. 3.

Representative selection of individual patterns observed at Summit Station on 6 December 2016. The patterns were stretched anamorphically to correct for the viewing angle. The mean width of the visually discernible parts of the patterns was 1 m.

Fig. 4.
Fig. 4.

Positions of 2-D patterns recorded on 6 December 2016 and analyzed to recover ice particle properties. The camera, lidar aperture, and roof shadow for the horizontal crystals (dashed line, see text) are also shown. The coordinates are as in Fig. 2.

Fig. 5.
Fig. 5.

Profile of temperature (red), dew point (green), relative humidity with respect to liquid water (pink), and ice (black) from a radiosonde launched at 2315 UTC on 6 December 2016. The inset shows the lowest 500 m. The humidity uncertainty is 4%.

Fig. 6.
Fig. 6.

CAPABL lidar and MMCR radar data from 1200 to 2400 UTC on 6 December 2016 at Summit; the camera imaging period is highlighted. The top three panels show the backscatter ratio (i.e., the ratio of total scattering to molecular scattering), depolarization, and diattenuation observed by CAPABL [17]. The middle panel is the cloud mask derived from CAPABL [18]. The bottom three panels show the reflectivity, Doppler fallspeed (where a positive value is downward), and the spectrum width (representative of turbulence or differential fall velocity). Since radar and lidar are complementary sensors that experience differing amounts of attenuation due to scatter by the cloud, CAPABL rarely observes the cloud top ( 5    km ), while the radar is able to penetrate the entire layer.

Fig. 7.
Fig. 7.

Left: pattern photographed at Summit, image width 5°, stretched anamorphically to compensate for the viewing angle. The pattern angular scale is approximate, based on particle altitude estimate. The observed image was stretched in the vertical direction to correct for the viewing angle. The particle diameter estimated from fringe separation was 150 μm. Right: theoretical 2-D scattering pattern from a 50 μm diameter, 1 μm thick, hexagonal plate tilted at 32° w.r.t. the incident direction. The pattern is centered on the direction of the specular reflection from the basal facet and is 10° wide.

Fig. 8.
Fig. 8.

Left: as in Fig. 7, but the size is 130 μm. Right: theoretical pattern from a 50 μm diameter, 4 μm thick, slightly rounded hexagonal plate tilted at 32° w.r.t. the incident direction, image width 10°.

Fig. 9.
Fig. 9.

Left: as in Fig. 7, but the size is 120 μm. Right: theoretical pattern for a strongly rounded hexagonal plate 50 μm diameter, 1 μm mean thickness, incident angle 20°, image width 20°.

Fig. 10.
Fig. 10.

Left: as in Fig. 7, but the size is 175 μm. Right: theoretical pattern for a 40 μm diameter, nearly spheroidal plate with 0.5 μm mean thickness, incident angle 20°, image width 20°.

Fig. 11.
Fig. 11.

(a)–(d): side-on and perspective views of the particle shape models used for computing the patterns shown in Figs. 710, respectively.

Fig. 12.
Fig. 12.

Left: patterns from Summit, width 5° (a)–(c); pattern (c) corresponds to plate diameter of 210    μm . Right: patterns computed from beam tracing for scalene plates with 3.6 and 36 μm edges, image width 16° (d), 9 and 91 μm edges, image width 10° (e), and a 100 μm diameter regular hexagonal plate, image width 10° (f), all 10 μm thick.

Fig. 13.
Fig. 13.

Left: as in Fig. 7; from the fringe spacing, the length of this column-like particle was estimated at 600    μm . Right: theoretical pattern for a 32 μm diameter, 160 μm long, hexagonal column with a prismatic facet tilted at 32° w.r.t. the incident direction, image width 20°.

Fig. 14.
Fig. 14.

Left: as in Fig. 7; the particle size estimated from the speckle [16] was 730 μm. Right: theoretical pattern for roughened hexagonal plate 40 μm diameter, 1.3 μm thick, incident angle 32°, image width 30°.

Metrics