Abstract

We demonstrate ultrafast all-optical switching in femtosecond laser inscribed nonlinear directional couplers in gallium lanthanum sulphide operated at 1.55 μm. We report on the evaluation of the nonlinear refractive index of the waveguides forming the directional couplers by making use of the switching parameters. The nonlinear refractive index is reduced by the inscription process to about 4–5 times compared to bulk material.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

Giorgos Demetriou, Jean-Philippe Bérubé, Réal Vallée, Younès Messaddeq, Christian R. Petersen, Deepak Jain, Ole Bang, Chris Craig, Daniel W. Hewak, and Ajoy K Kar
Opt. Express 24(6) 6350-6358 (2016)

Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide

John E. McCarthy, Henry T. Bookey, Nicholas D. Psaila, Robert R. Thomson, and Ajoy K. Kar
Opt. Express 20(2) 1545-1551 (2012)

Ultrafast laser inscription in chalcogenide glass: thermal versus athermal fabrication

Thomas Gretzinger, Simon Gross, Martin Ams, Alexander Arriola, and Michael J. Withford
Opt. Mater. Express 5(12) 2862-2877 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  2. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
    [Crossref]
  3. P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.
  4. D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  6. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
    [Crossref]
  7. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15, 11691–11697 (2007).
    [Crossref]
  8. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012).
    [Crossref]
  9. J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
    [Crossref]
  10. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20, 1545–1551 (2012).
    [Crossref]
  11. G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24, 6350–6358 (2016).
    [Crossref]
  12. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  13. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
    [Crossref]
  14. R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
    [Crossref]
  15. A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39, 4820–4822 (2014).
    [Crossref]
  16. R. W. Boyd, “Chapter 7—Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), pp. 329–390.
  17. V. Mizrahi, M. A. Saifi, M. J. Andrejco, K. W. DeLong, and G. I. Stegeman, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
    [Crossref]
  18. J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
    [Crossref]
  19. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151–2157 (2006).
    [Crossref]
  20. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
    [Crossref]
  21. K. S. Chiang, “Propagation of short optical pulses in directional couplers with Kerr nonlinearity,” J. Opt. Soc. Am. B 14, 1437–1443 (1997).
    [Crossref]

2016 (1)

2014 (3)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
[Crossref]

A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39, 4820–4822 (2014).
[Crossref]

2013 (1)

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

2012 (2)

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

2007 (1)

2006 (2)

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151–2157 (2006).
[Crossref]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

2005 (1)

2001 (1)

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

1997 (1)

1996 (1)

1991 (1)

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

1989 (1)

Aitchison, J. S.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

Andrejco, M. J.

Arezki, B.

Arriola, A.

Bang, O.

Barton, J. S.

Bastock, P.

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

Beecher, S.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

Bérubé, J.-P.

Bindra, K. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

Blömer, D.

Bookey, H.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

Bookey, H. T.

Boyd, R. W.

R. W. Boyd, “Chapter 7—Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), pp. 329–390.

Brady, D.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Campbell, S.

Chen, W.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Chiang, K. S.

Choudhury, D.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39, 4820–4822 (2014).
[Crossref]

Craig, C.

Curry, R. J.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Davis, K. M.

DeLong, K. W.

Demetriou, G.

Dreisow, F.

Eaton, S. M.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Elder, I.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

Elliott, G. R.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Fender, A.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Herman, P. R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Hewak, D. W.

G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24, 6350–6358 (2016).
[Crossref]

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Hibino, Y.

Hirao, K.

Huang, C. C.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Hughes, M.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Ironside, C. N.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

Iyer, R.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Jain, D.

Jha, A.

A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

Jose, G.

Kar, A.

Kar, A. K.

G. Demetriou, J.-P. Bérubé, R. Vallée, Y. Messaddeq, C. R. Petersen, D. Jain, O. Bang, C. Craig, D. W. Hewak, and A. K. Kar, “Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications,” Opt. Express 24, 6350–6358 (2016).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
[Crossref]

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20, 1545–1551 (2012).
[Crossref]

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, “Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications,” Opt. Express 15, 11691–11697 (2007).
[Crossref]

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

Kean, A. H.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

Kern, P.

Khan, K.

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

Knight, K.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Kohtoku, M.

Labadie, L.

Lamb, R.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

Liu, X.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

MacPherson, W. N.

Mairaj, A. K.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Martin, G.

Mary, R.

R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
[Crossref]

McCarthy, J.

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

McCarthy, J. E.

Messaddeq, Y.

Miura, K.

Mizrahi, V.

Mukherjee, S.

Nasu, Y.

Nolte, S.

Petersen, C. R.

Petrovich, M. N.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Psaila, N.

Psaila, N. D.

Reid, D. T.

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Ródenas, A.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Saifi, M. A.

Schreiber, T.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Simpson, R.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Sproat, C.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

Stegeman, G. I.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

V. Mizrahi, M. A. Saifi, M. J. Andrejco, K. W. DeLong, and G. I. Stegeman, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
[Crossref]

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Sugimoto, N.

Szameit, A.

Thomson, R.

Thomson, R. R.

Tünnermann, A.

Vallée, R.

Villeneuve, A.

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

Weatherby, E.

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Wherrett, B. S.

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

Yao, J.

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

Zhang, H.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Zhang, L.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

Appl. Phys. Lett. (2)

K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, and A. Jha, “Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption,” Appl. Phys. Lett. 79, 1939–1941 (2001).
[Crossref]

J. McCarthy, H. Bookey, S. Beecher, R. Lamb, I. Elder, and A. K. Kar, “Spectrally tailored mid-infrared super-continuum generation in a buried waveguide spanning 1750  nm to 5000  nm for atmospheric transmission,” Appl. Phys. Lett. 103, 151103 (2013).
[Crossref]

Electron. Lett. (1)

J. S. Aitchison, A. H. Kean, C. N. Ironside, A. Villeneuve, and G. I. Stegeman, “Ultrafast all-optical switching in Al0.18Ga0.82As directional coupler in 1.55 μm spectral region,” Electron. Lett. 27, 1709–1710 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Mary, D. Choudhury, and A. K. Kar, “Applications of fiber lasers for the development of compact photonic devices,” IEEE J. Sel. Top. Quantum Electron. 20, 72–84 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18, 2174–2176 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photon. Rev. 8, 827–846 (2014).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Other (3)

P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (Optical Society of America, 2015), STh1G.1.

D. W. Hewak, D. Brady, R. J. Curry, G. R. Elliott, C. C. Huang, M. Hughes, K. Knight, A. K. Mairaj, M. N. Petrovich, R. Simpson, and C. Sproat, “Chalcogenide glasses for photonics device applications,” in Photonic Glasses and Glass-Ceramics, G. S. Murugan, ed. (2010), pp. 29–102.

R. W. Boyd, “Chapter 7—Processes resulting from the intensity-dependent refractive index,” in Nonlinear Optics, 3rd ed. (Academic, 2008), pp. 329–390.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the directional coupler structure, where s is the core-to-core separation between the waveguides along the interaction length ( L ).

Fig. 2.
Fig. 2.

Output relative transmission for the bar (red) and cross (black) ports as a function of the input irradiance for (a) a directional coupler with an interaction length of 3.7 mm and (b) a directional coupler with an interaction length of 3.8 mm. The pink and blue circles in both graphs represent the bar and cross output ratios, respectively, in the linear regime when using a 1550 nm CW fiber laser as input.

Fig. 3.
Fig. 3.

Closed-aperture Z -scan trace of GLS at 1550 nm performed at a pulse energy of 100 nJ. The theoretical fit (solid red line) is calculated using an n 2 coefficient of 9.7 × 10 19    m 2 / W .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π L n 2 I λ ,
I c = λ L n 2 .

Metrics