Abstract

Recently, a new noncontact reflection-mode imaging modality called photoacoustic remote sensing (PARS) microscopy was introduced providing optical absorption contrast. Unlike previous modalities, which rely on interferometric detection of a probe beam to measure surface oscillations, the PARS technique detects photoacoustic initial pressures induced by a pulsed laser at their origin by monitoring intensity modulations of a reflected probe beam. In this paper, a model describing the temporal evolution from a finite excitation pulse is developed with consideration given to the coherence length of the interrogation beam. Analytical models are compared with approximations, finite-difference time-domain (FDTD) simulations, and experiments with good agreement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging

Stefan Preisser, Wolfgang Rohringer, Mengyang Liu, Christian Kollmann, Stefan Zotter, Balthasar Fischer, and Wolfgang Drexler
Biomed. Opt. Express 7(10) 4171-4186 (2016)

A low-cost photoacoustic microscopy system with a laser diode excitation

Tianheng Wang, Sreyankar Nandy, Hassan S. Salehi, Patrick D. Kumavor, and Quing Zhu
Biomed. Opt. Express 5(9) 3053-3058 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (72)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription