Abstract

This work presents the development of an optical setup for quantitative, high-temporal resolution line-of-sight extinction imaging in harsh optical environments. The application specifically targets measurements of automotive fuel sprays at high ambient temperature and pressure conditions where time scales are short and perceived attenuation by refractive index gradients along the optical path (i.e., beam steering) can be significant. The illumination and collection optics are optimized to abate beam steering, and the design criteria are supported by well-established theoretical relationships. The general effects of refractive steering are explained conceptually using simple ray tracing. Three isolated scenarios are analyzed to establish the lighting characteristics required to render the observed radiant flux unaffected by the steering effect. These criteria are used to optimize light throughput in the optical system, enabling minimal exposure times and high-temporal resolution capabilities. The setup uses a customized engineered diffuser to transmit a constant radiance within a limited angular range such that radiant intensity is maximized while fulfilling the lighting criteria for optimal beam-steering suppression. Methods for complete characterization of the optical system are detailed. Measurements of the liquid–vapor boundary and the soot volume fraction in an automotive spray are presented to demonstrate the resulting improved contrast and reduced uncertainty. The current optical setup reduces attenuation caused by refractive index gradients by an order of magnitude compared to previous high-temporal resolution setups.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Forward-illumination light-extinction technique for soot measurement

Yi Xu and Chia-fon F. Lee
Appl. Opt. 45(9) 2046-2057 (2006)

Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements

Kevin A. Thomson, Matthew R. Johnson, David R. Snelling, and Gregory J. Smallwood
Appl. Opt. 47(5) 694-703 (2008)

Two-dimensional imaging of soot volume fraction in laminar diffusion flames

David R. Snelling, Kevin A. Thomson, Gregory J. Smallwood, and Ömer L. Gülder
Appl. Opt. 38(12) 2478-2485 (1999)

References

  • View by:
  • |
  • |
  • |

  1. H. Hovarth, “Atmospheric light absorption–a review,” Atmos. Environ. 27A, 293–317 (1993).
    [Crossref]
  2. M. Musculus and L. M. Pickett, “Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments,” Combust. Flame 141, 371–391 (2005).
    [Crossref]
  3. J. B. Ghandhi and D. M. Heim, “An optimized optical system for backlit imaging,” Rev. Sci. Instrum. 80, 056105 (2009).
    [Crossref]
  4. M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
    [Crossref]
  5. J. Manin, M. Bardi, and L. M. Pickett, “Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays,” in Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 (2012).
  6. J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
    [Crossref]
  7. R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
    [Crossref]
  8. S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).
  9. J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
    [Crossref]
  10. J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
    [Crossref]
  11. I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
    [Crossref]
  12. P. Bakker, R. Willems, and N. Dam, “Implementation of high-speed laser-induced incandescence imaging in CI engines,” (2016).
  13. L. M. Pickett and D. Siebers, “Fuel effects on soot processes of fuel jets at DI diesel conditions,” (2003).
  14. L. M. Pickett and D. L. Siebers, “Soot in dieselfuel jets: effect of ambient temperature, ambient density, and injection pressure,” Combust. Flame 138, 114–135 (2004).
    [Crossref]
  15. L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
    [Crossref]
  16. P. S. Greenberg and J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [Crossref]
  17. Y. Xu and C. F. Lee, “Forward-illumination light-extinction technique for soot measurement,” Appl. Opt. 45, 2046–2057 (2006).
    [Crossref]
  18. K. A. Thomson, M. R. Johnson, D. R. Snelling, and G. J. Smallwood, “Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements,” Appl. Opt. 47, 694–703 (2008).
    [Crossref]
  19. C. Carlen, “High speed, high current pulsed driver circuit,” U.S. patent14/998,101 (21March2015).
  20. J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
    [Crossref]
  21. R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).
  22. D. L. Siebers, “Liquid-phase fuel penetration in diesel sprays,” (1998).
  23. S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).
  24. S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).
  25. A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
    [Crossref]
  26. L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).
  27. R. C. Millikan, “Optical properties of soot,” J. Opt. Soc. Am. 51, 698–699 (1961).
    [Crossref]
  28. W. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).
  29. H. C. Hottel and A. Sarofim, Radiative Transfer (McGraw-Hill, 1967).

2017 (1)

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

2015 (4)

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
[Crossref]

L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
[Crossref]

S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).

2014 (1)

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

2013 (1)

J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
[Crossref]

2012 (2)

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

2011 (1)

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

2009 (1)

J. B. Ghandhi and D. M. Heim, “An optimized optical system for backlit imaging,” Rev. Sci. Instrum. 80, 056105 (2009).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

M. Musculus and L. M. Pickett, “Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments,” Combust. Flame 141, 371–391 (2005).
[Crossref]

2004 (1)

L. M. Pickett and D. L. Siebers, “Soot in dieselfuel jets: effect of ambient temperature, ambient density, and injection pressure,” Combust. Flame 138, 114–135 (2004).
[Crossref]

1997 (1)

1993 (1)

H. Hovarth, “Atmospheric light absorption–a review,” Atmos. Environ. 27A, 293–317 (1993).
[Crossref]

1961 (1)

Aldaraví, P. M.

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

Alden, M.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Andersson, Ø.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Aronson, U.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Attridge, G. G.

R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).

Axford, N. R.

R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).

Bakker, P.

P. Bakker, R. Willems, and N. Dam, “Implementation of high-speed laser-induced incandescence imaging in CI engines,” (2016).

Bardi, M.

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

J. Manin, M. Bardi, and L. M. Pickett, “Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays,” in Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 (2012).

Bazyn, T.

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Bengtson, P. E.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Bladh, H.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Boxx, I. G.

I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
[Crossref]

Brunaux, G.

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

Carlen, C.

C. Carlen, “High speed, high current pulsed driver circuit,” U.S. patent14/998,101 (21March2015).

Chartier, C.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Dahms, R. N.

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

Dalen, K.

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).

Dam, N.

P. Bakker, R. Willems, and N. Dam, “Implementation of high-speed laser-induced incandescence imaging in CI engines,” (2016).

Garcia-Oliver, J.

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

Geigle, K. P.

I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
[Crossref]

Genzale, C. L.

L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
[Crossref]

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).

Ghandhi, J. B.

J. B. Ghandhi and D. M. Heim, “An optimized optical system for backlit imaging,” Rev. Sci. Instrum. 80, 056105 (2009).
[Crossref]

Greenberg, P. S.

Heim, D. M.

J. B. Ghandhi and D. M. Heim, “An optimized optical system for backlit imaging,” Rev. Sci. Instrum. 80, 056105 (2009).
[Crossref]

Heinold, O.

I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
[Crossref]

Hottel, H. C.

H. C. Hottel and A. Sarofim, Radiative Transfer (McGraw-Hill, 1967).

Hovarth, H.

H. Hovarth, “Atmospheric light absorption–a review,” Atmos. Environ. 27A, 293–317 (1993).
[Crossref]

Ivarsson, A.

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

Jacobson, R. E.

R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).

Johansson, B.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Johnson, M. R.

Kastengren, A. L.

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Ku, J. C.

Lee, C. F.

Malbec, L. M.

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).

Manin, J.

S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).

L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
[Crossref]

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
[Crossref]

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).

J. Manin, M. Bardi, and L. M. Pickett, “Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays,” in Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 (2012).

S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

McCluney, W.

W. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).

Millikan, R. C.

Musculus, M.

M. Musculus and L. M. Pickett, “Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments,” Combust. Flame 141, 371–391 (2005).
[Crossref]

Novella, R.

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

Oefelein, J. C.

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

Pastor, J.

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

Payari, R.

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

Payri, R.

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Pickett, L. M.

S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).

L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
[Crossref]

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
[Crossref]

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

M. Musculus and L. M. Pickett, “Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments,” Combust. Flame 141, 371–391 (2005).
[Crossref]

L. M. Pickett and D. L. Siebers, “Soot in dieselfuel jets: effect of ambient temperature, ambient density, and injection pressure,” Combust. Flame 138, 114–135 (2004).
[Crossref]

L. M. Pickett and D. Siebers, “Fuel effects on soot processes of fuel jets at DI diesel conditions,” (2003).

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

J. Manin, M. Bardi, and L. M. Pickett, “Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays,” in Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 (2012).

S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).

L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).

Powell, C. F.

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Ray, S. F.

R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).

Richter, M.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Salvador, F. J.

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

Sarofim, A.

H. C. Hottel and A. Sarofim, Radiative Transfer (McGraw-Hill, 1967).

Siebers, D.

L. M. Pickett and D. Siebers, “Fuel effects on soot processes of fuel jets at DI diesel conditions,” (2003).

Siebers, D. L.

L. M. Pickett and D. L. Siebers, “Soot in dieselfuel jets: effect of ambient temperature, ambient density, and injection pressure,” Combust. Flame 138, 114–135 (2004).
[Crossref]

D. L. Siebers, “Liquid-phase fuel penetration in diesel sprays,” (1998).

Sjöholm, J.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Skeen, S. A.

S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).

J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
[Crossref]

S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

Smallwood, G. J.

Snelling, D. R.

Thomson, K. A.

Tilocco, F. Z.

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Vaquerizo, D.

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

Wellander, R.

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

Willems, R.

P. Bakker, R. Willems, and N. Dam, “Implementation of high-speed laser-induced incandescence imaging in CI engines,” (2016).

Xu, Y.

Xuan, T.

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Therm. Eng. (1)

R. Payri, F. J. Salvador, P. M. Aldaraví, and D. Vaquerizo, “ECN Spray G external spray visualization and spray collapse description through penetration and morphology analysis,” Appl. Therm. Eng. 112, 304–316 (2017).
[Crossref]

Atmos. Environ. (1)

H. Hovarth, “Atmospheric light absorption–a review,” Atmos. Environ. 27A, 293–317 (1993).
[Crossref]

Atomization Sprays (3)

M. Bardi, R. Payari, L. M. Malbec, G. Brunaux, L. M. Pickett, J. Manin, T. Bazyn, and C. L. Genzale, “Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels,” Atomization Sprays 22, 807–842 (2012).
[Crossref]

L. M. Pickett, J. Manin, and C. L. Genzale, “Uncertainty quantification for liquid penetration of evaporating sprays at diesel-like conditions,” Atomization Sprays 25, 425–452 (2015).
[Crossref]

A. L. Kastengren, F. Z. Tilocco, C. F. Powell, J. Manin, L. M. Pickett, R. Payri, and T. Bazyn, “Engine combustion network (ECN): measurements of nozzle geometry and hydraulic behavior of diesel sprays,” Atomization Sprays 22, 1011–1052 (2012).
[Crossref]

Combust. Flame (2)

M. Musculus and L. M. Pickett, “Diagnostic considerations for optical laser-extinction measurements of soot in high-pressure transient combustion environments,” Combust. Flame 141, 371–391 (2005).
[Crossref]

L. M. Pickett and D. L. Siebers, “Soot in dieselfuel jets: effect of ambient temperature, ambient density, and injection pressure,” Combust. Flame 138, 114–135 (2004).
[Crossref]

Exp. Fluids (1)

I. G. Boxx, O. Heinold, and K. P. Geigle, “Laser-induced incandescence measurements in a fired diesel engine at 3  kHz,” Exp. Fluids 56, 3 (2015).
[Crossref]

Fuel (1)

J. Manin, M. Bardi, L. M. Pickett, R. N. Dahms, and J. C. Oefelein, “Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments,” Fuel 134, 531–543 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Proc. Combust. Inst. (1)

S. A. Skeen, J. Manin, and L. M. Pickett, “Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames,” Proc. Combust. Inst. 35, 3167–3174 (2015).

Rev. Sci. Instrum. (1)

J. B. Ghandhi and D. M. Heim, “An optimized optical system for backlit imaging,” Rev. Sci. Instrum. 80, 056105 (2009).
[Crossref]

SAE Int. J. Engines (3)

J. Pastor, J. Garcia-Oliver, R. Novella, and T. Xuan, “Soot quantification of single-hole diesel sprays by means of extinction imaging,” SAE Int. J. Engines 8, 2068–2077 (2015).
[Crossref]

J. Sjöholm, R. Wellander, H. Bladh, M. Richter, P. E. Bengtson, M. Alden, U. Aronson, C. Chartier, Ø. Andersson, and B. Johansson, “Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot,” SAE Int. J. Engines 4, 1607–1622 (2011).
[Crossref]

J. Manin, L. M. Pickett, and S. A. Skeen, “Two-color diffused back-illumination imaging as a diagnostic for time-resolved measurements in recting sprays,” SAE Int. J. Engines 6, 1908–1921 (2013).
[Crossref]

Other (11)

P. Bakker, R. Willems, and N. Dam, “Implementation of high-speed laser-induced incandescence imaging in CI engines,” (2016).

L. M. Pickett and D. Siebers, “Fuel effects on soot processes of fuel jets at DI diesel conditions,” (2003).

C. Carlen, “High speed, high current pulsed driver circuit,” U.S. patent14/998,101 (21March2015).

S. A. Skeen, J. Manin, K. Dalen, and L. M. Pickett, “Extinction-based imaging of soot processes over a range of diesel operating conditions,” in 8th U.S. National Combustion Meeting, Salt Lake City, Utah (2013).

J. Manin, M. Bardi, and L. M. Pickett, “Evaluation of the liquid length via diffused back-illumination imaging in vaporizing diesel sprays,” in Proceedings of the 8th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2012 (2012).

L. M. Pickett, C. L. Genzale, J. Manin, and L. M. Malbec, “Measurement uncertainty of liquid penetration in evaporating diesel sprays,” in 23rd Annual Conference on Liquid Atomization and Spray Systems (2011).

R. E. Jacobson, S. F. Ray, G. G. Attridge, and N. R. Axford, The Manual of Photography, 9th ed. (Focal, 2000).

D. L. Siebers, “Liquid-phase fuel penetration in diesel sprays,” (1998).

S. A. Skeen, J. Manin, L. M. Pickett, K. Dalen, and A. Ivarsson, “Quantitative spatially resolved measurements of total radiation in high-pressure spray flames,” (2014).

W. McCluney, Introduction to Radiometry and Photometry, 2nd ed. (Artech House, 2014).

H. C. Hottel and A. Sarofim, Radiative Transfer (McGraw-Hill, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Illustrations of acceptance cones collecting light to a specific pixel on an imaging sensor. Chief and marginal rays are traced through (a) parallel-faced, (b) non-parallel-faced, and (c) non-planar-faced refracting media. The solid lines trace the refracted marginal rays, the dashed lines the un-refracted marginal rays, and the dotted line shows the refracted chief ray. The plot to the right illustrates the angular distribution of radiant intensity, and the shaded area represents the radiant flux received by the pixel.

Fig. 2.
Fig. 2.

Schematics of previous optical setups for extinction imaging [16,17,18,3].

Fig. 3.
Fig. 3.

Angular distribution in image plane of the Ghandhi and Heim and Thomson et al. optical setups as calculated with non-sequential ray tracing using commercial software ZEMAX. Y -axis values are not representative, as the results have been scaled for comparison.

Fig. 4.
Fig. 4.

DBI illumination setup optimized for high-temporal resolution capabilities.

Fig. 5.
Fig. 5.

Illustration of camera objective characterization. Chief and marginal rays of the acceptance cone to a central (solid) and peripheral (dotted) pixel are shown.

Fig. 6.
Fig. 6.

Measured acceptance angle ω and steepest angle α (bottom) at various points in the image plane with a 50 mm f / 1.2 lens objective equipped with a two-diopter close-up lens. The corresponding angles are illustrated in the top figure and indicated in the insets on the plot. The measurements used a 1% decrease in pixel count threshold.

Fig. 7.
Fig. 7.

Illustration demonstrating how beam steering can potentially induce an apparent optical thickness. Beams being steered out induce a positive optical thickness, while beams being steered in induce a negative optical thickness.

Fig. 8.
Fig. 8.

(Top) Specific optical arrangement used to generate the input to the large engineered diffuser. Also shown is the radiance measurement technique used to characterize the lighting. (Middle) Measured angular intensity distribution at three locations across the imaging plane with collimated input to the diffuser. (Bottom) Measured angular intensity distribution at three locations across the imaging plane with a slightly focused input to the diffuser.

Fig. 9.
Fig. 9.

Measured radiance from a 30-deg diffuser with different incident angles. A laser was used as the input with the incident angle varied. The noisy appearance of the profiles is due to speckle.

Fig. 10.
Fig. 10.

Optical setup for high-temporal resolution DBIEI-LL and DBIEI-soot measurements of liquid fuel spray in high-pressure and high-temperature ambient conditions.

Fig. 11.
Fig. 11.

Instantaneous τ images of DBIEI-LL measurement from a 90 μm orifice injector into an ambient with T amb = 900 K and ρ amb = 22.8 kg / m 3 using (a) modified Ghandhi and Heim setup with a 450 nm LED and 82 kHz frame rate, (b) current setup with a 623-nm LED, 15-deg diffuser, and 150 kHz frame rate, and (c) same setup with focusing to the diffuser.

Fig. 12.
Fig. 12.

Instantaneous KL images of DBIEI-soot measurement from 90 μm orifice injector into an ambient with T amb = 900 K and ρ amb = 22.8 kg / m 3 using, (a) modified Ghandhi and Heim setup with 623-nm LED and 41 kHz frame rate, (b) current setup with 623-nm LED, 15-deg diffuser, and 45 kHz frame rate and (c) same setup with focusing to the diffuser.

Fig. 13.
Fig. 13.

Illustration of irradiance quantified through the focal point of one pixel from an extended light source with constant radiance subtended by the solid angle, Ω , of the camera objective. Also illustrated is the radiant exchange between an infinitesimal area in the focal point and an infinitesimal area on the source.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ obs = L em ˙ Ω obs ˙ A obs .
R = 2 tan 1 ( w + d 2 ) .
L em ( θ ) = d 2 ϕ em cos ( θ ) d A em d Ω em .
L obs ( θ ) = d 2 ϕ obs d A obs d Ω obs .
cos ( θ ) d A em = x 2 d Ω obs ,
d A obs = x 2 d Ω em .
d ϕ obs d A obs = Ω obs L em ( θ ) d Ω obs .
d ϕ obs d A obs = L em Ω obs ,
ϕ obs = L em Ω obs A obs .

Metrics