Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Ultrafast all-optical flip-flop based on passive micro Sagnac waveguide ring with photonic crystal fiber

Not Accessible

Your library or personal account may give you access

Abstract

Ultrafast all-optical flip-flop based on a passive micro Sagnac waveguide ring is studied through theoretical analysis and numerical simulation in this paper. The types of D, R-S, J-K, and T flip-flop are designed by controlling the cross-phase modulation effect of lights in this special microring. The high nonlinearity of the hollow-core photonic crystal fiber is implanted on a chip to shorten the length of the ring and reduce input power. By sensible management, the pulse width ratio of the input and the control signal, problems of pulse narrowing, and residual pedestal at the out port are solved. The parameters affecting the performance of flip-flops are optimized. The results show that the all-optical flip-flops have stable performance, low power consumption, high transmission rate (up to 100Gb/s), and response time in picosecond order. The small size microwaveguide structure is suitable for photonic integration.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking

Dalai Gowri Sankar Rao, Venkatrao Palacharla, Sandip Swarnakar, and Santosh Kumar
Appl. Opt. 59(23) 7139-7143 (2020)

All-optical flip-flop operation based on bistability in V-cavity laser

Yingchen Wu, Yu Zhu, Xiaolu Liao, Jianjun Meng, and Jian-Jun He
Opt. Express 24(12) 12507-12514 (2016)

All-optical flip-flop based on nonlinear effects in fiber Bragg gratings

Mohammad Karimi, Majid Lafouti, Ali Asghar Amidiyan, and Jamshid Sabbaghzadeh
Appl. Opt. 51(1) 21-26 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved