Abstract

We demonstrate the analogue of electromagnetically induced transparency (EIT) in a metal–dielectric–metal (MDM) plasmonic waveguide. Plasmonic induced transparency is a method similar to EIT. In this paper, a plasmonic MDM waveguide is proposed by using an ellipse shaped side-coupled ring resonator and simulated by finite difference time domain. Plasmonics as a new field of chip-scale technology is an interesting substrate, which is used to propose and numerically investigate a novel MDM structure. The aforementioned framework is a 2×2 plasmonic ring resonator, employing gold as a metal and polymethyl methacrylate as a dielectric. Simulations show that a transparent window is located at 1550 nm and signal wavelength is assumed to be 860 nm, which is the phenomenon of plasmonic induced transparency. The velocity of the plasmonic mode can be considerably slowed while propagating along the MDM bends. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. This plasmonic waveguide system may find important applications for multichannel plasmonic filters, nano-scale optical switching, delay time devices, and slow-light devices in highly integrated optical circuits and networks. In comparison with our previous theoretical work based on circular shaped ring resonators, it is shown that ellipse shaped ring resonators demonstrate better specifications with a slow down factor estimated to be more than 30.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-induced transparency in a single multimode stub resonator

Guangtao Cao, Hongjian Li, Yan Deng, Shiping Zhan, Zhihui He, and Boxun Li
Opt. Express 22(21) 25215-25223 (2014)

Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang
Opt. Express 21(8) 9198-9205 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription