Abstract

Star trackers, optical attitude sensors with high precision, are susceptible to space light from the Sun and the Earth albedo. Until now, research in this field has lacked systematic analysis. In this paper, we propose an installation orientation method for a star tracker onboard sun-synchronous-orbit spacecraft and analyze the space light distribution by transforming the complicated relative motion among the Sun, Earth, and the satellite to the body coordinate system of the satellite. Meanwhile, the boundary-curve equations of the areas exposed to the stray light from the Sun and the Earth albedo were calculated by the coordinate-transformation matrix under different maneuver attitudes, and the installation orientation of the star tracker was optimized based on the boundary equations instead of the traditional iterative simulation method. The simulation and verification experiment indicate that this installation orientation method is effective and precise and can provide a reference for the installation of sun-synchronous orbit star trackers free from the stray light.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Earth-to-space laser beam transmission for spacecraft attitude measurement

T. Aruga, K. Araki, T. Igarashi, F. Imai, Y. Yamamoto, and H. Sakagami
Appl. Opt. 23(1) 143-147 (1984)

Effective star tracking method based on optical flow analysis for star trackers

Ting Sun, Fei Xing, Xiaochu Wang, Jin Li, Minsong Wei, and Zheng You
Appl. Opt. 55(36) 10335-10340 (2016)

The Mariner Spacecraft Star Sensors

W. C. Goss
Appl. Opt. 9(5) 1056-1067 (1970)

References

  • View by:
  • |
  • |
  • |

  1. R. P. Breault, “Stray light technology overview in 1988,” in 32nd Annual Technical Symposium (International Society for Optics and Photonics, 1989), pp. 2–9.
  2. R. P. Breault, “Problems and techniques in stray radiation suppression,” in SPIE/SPSE Technical Symposium East (International Society for Optics and Photonics, 1977), pp. 2–23.
  3. R. P. Breault, “Control of stray light,” Handb. Opt. 1, 31–38 (1995).
  4. O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).
  5. C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10, 10–16 (1995).
    [Crossref]
  6. C. C. Liebe, “Accuracy performance of star trackers – a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38, 587–599 (2002).
    [Crossref]
  7. G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
    [Crossref]
  8. D. Michaels and J. Speed, “Ball aerospace star tracker achieves high tracking accuracy for a moving star field,” in IEEE Aerospace Conference (IEEE, 2005), pp. 1–7.
  9. T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).
  10. M. Marciniak and J. Enright, “Validating microsatellite star tracker baffle tests,” in AIAA/AAS Astrodynamics Specialist Conference (2014), p. 4422.
  11. H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
    [Crossref]
  12. J. P. Arnoux, “Star sensor baffle optimization: some helpful practical design rules,” in SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation (International Society for Optics and Photonics, 1996), pp. 333–338.
  13. E. van Breukelen, “Facet nano, a modular star tracker concept for highly miniaturized spacecraft,” in International Astronautical Congress (2009), pp. 12–16.
  14. S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
    [Crossref]
  15. F. Xing, Y. Dong, and Z. You, “Laboratory calibration of star tracker with brightness independent star identification strategy,” Opt. Eng. 45, 63604 (2006).
    [Crossref]
  16. T. Sun, F. Xing, and Z. You, “Optical system error analysis and calibration method of high-accuracy star trackers,” Sensors 13, 4598–4623 (2013).
    [Crossref]
  17. T. Sun, F. Xing, Z. You, X. Wang, and B. Li, “Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time,” Opt. Express 22, 6009–6024 (2014).
    [Crossref]
  18. T. Sun, F. Xing, Z. You, and M. Wei, “Motion-blurred star acquisition method of the star tracker under high dynamic conditions,” Opt. Express 21, 20096–20110 (2013).
    [Crossref]
  19. J. Fang and X. Ning, “Installation direction analysis of star sensors by hybrid condition number,” IEEE Trans. Instrum. Meas. 58, 3576–3582 (2009).
    [Crossref]
  20. L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).
  21. C. Yan, L. Huang, and F. Yang, “Installation angle of star sensor based on the mission planning,” CN patent101758934A (30June2010).
  22. D. Mortari and A. Romoli, “StarNav III: a three fields of view star tracker,” in IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1–57.
  23. J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications (Springer, 2012).
  24. D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Prog. Aerosp. Sci. 64, 56–65 (2014).
    [Crossref]
  25. G. Wang, F. Xing, M. Wei, and Z. You, “Precision enhancement method for multiplexing image detector-based sun sensor with varying and coded apertures,” Appl. Opt. 54, 10467–10472 (2015).
    [Crossref]
  26. M. Wei, F. Xing, Z. You, and G. Wang, “Multiplexing image detector method for digital sun sensors with arc-second class accuracy and large FOV,” Opt. Express 22, 23094–23107 (2014).
    [Crossref]

2015 (1)

2014 (3)

2013 (3)

T. Sun, F. Xing, Z. You, and M. Wei, “Motion-blurred star acquisition method of the star tracker under high dynamic conditions,” Opt. Express 21, 20096–20110 (2013).
[Crossref]

T. Sun, F. Xing, and Z. You, “Optical system error analysis and calibration method of high-accuracy star trackers,” Sensors 13, 4598–4623 (2013).
[Crossref]

L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).

2009 (2)

J. Fang and X. Ning, “Installation direction analysis of star sensors by hybrid condition number,” IEEE Trans. Instrum. Meas. 58, 3576–3582 (2009).
[Crossref]

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

2006 (2)

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

F. Xing, Y. Dong, and Z. You, “Laboratory calibration of star tracker with brightness independent star identification strategy,” Opt. Eng. 45, 63604 (2006).
[Crossref]

2002 (1)

C. C. Liebe, “Accuracy performance of star trackers – a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38, 587–599 (2002).
[Crossref]

1995 (2)

R. P. Breault, “Control of stray light,” Handb. Opt. 1, 31–38 (1995).

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10, 10–16 (1995).
[Crossref]

1993 (1)

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

Amankwah, K.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Arnoux, J. P.

J. P. Arnoux, “Star sensor baffle optimization: some helpful practical design rules,” in SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation (International Society for Optics and Photonics, 1996), pp. 333–338.

Bettarini, R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Breault, R. P.

R. P. Breault, “Control of stray light,” Handb. Opt. 1, 31–38 (1995).

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

R. P. Breault, “Stray light technology overview in 1988,” in 32nd Annual Technical Symposium (International Society for Optics and Photonics, 1989), pp. 2–9.

R. P. Breault, “Problems and techniques in stray radiation suppression,” in SPIE/SPSE Technical Symposium East (International Society for Optics and Photonics, 1977), pp. 2–23.

Camacho-Lara, S.

J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications (Springer, 2012).

Casini, R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Dittman, M. G.

O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Dong, Y.

F. Xing, Y. Dong, and Z. You, “Laboratory calibration of star tracker with brightness independent star identification strategy,” Opt. Eng. 45, 63604 (2006).
[Crossref]

Dzamba, T.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Enright, J.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

M. Marciniak and J. Enright, “Validating microsatellite star tracker baffle tests,” in AIAA/AAS Astrodynamics Specialist Conference (2014), p. 4422.

Fang, J.

J. Fang and X. Ning, “Installation direction analysis of star sensors by hybrid condition number,” IEEE Trans. Instrum. Meas. 58, 3576–3582 (2009).
[Crossref]

Fleming, J. C.

O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Graziano, B. P.

D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Prog. Aerosp. Sci. 64, 56–65 (2014).
[Crossref]

Hama, K.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

Hao, Y.

L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).

Huang, L.

C. Yan, L. Huang, and F. Yang, “Installation angle of star sensor based on the mission planning,” CN patent101758934A (30June2010).

Jovanovic, I.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Kaidy, J. T.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Kawano, H.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

Landi, A.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Li, B.

Liebe, C. C.

C. C. Liebe, “Accuracy performance of star trackers – a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38, 587–599 (2002).
[Crossref]

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10, 10–16 (1995).
[Crossref]

Lorenzini, S.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Madry, S.

J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications (Springer, 2012).

Marciniak, M.

M. Marciniak and J. Enright, “Validating microsatellite star tracker baffle tests,” in AIAA/AAS Astrodynamics Specialist Conference (2014), p. 4422.

McCall, S. H.

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

McVittie, G.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Michaels, D.

D. Michaels and J. Speed, “Ball aerospace star tracker achieves high tracking accuracy for a moving star field,” in IEEE Aerospace Conference (IEEE, 2005), pp. 1–7.

Miyatake, K.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

Mortari, D.

D. Mortari and A. Romoli, “StarNav III: a three fields of view star tracker,” in IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1–57.

Nakamura, S.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

Ning, X.

J. Fang and X. Ning, “Installation direction analysis of star sensors by hybrid condition number,” IEEE Trans. Instrum. Meas. 58, 3576–3582 (2009).
[Crossref]

Pelton, J. N.

J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications (Springer, 2012).

Pompea, S. M.

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

Prieto, D. M.

D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Prog. Aerosp. Sci. 64, 56–65 (2014).
[Crossref]

Regens, N. L.

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

Roberts, P. C.

D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Prog. Aerosp. Sci. 64, 56–65 (2014).
[Crossref]

Rogers, G. D.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Romoli, A.

D. Mortari and A. Romoli, “StarNav III: a three fields of view star tracker,” in IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1–57.

Schwinger, M. R.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Shimoji, H.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

Sinclair, D.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Speed, J.

D. Michaels and J. Speed, “Ball aerospace star tracker achieves high tracking accuracy for a moving star field,” in IEEE Aerospace Conference (IEEE, 2005), pp. 1–7.

Straka, S. A.

O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

Strikwerda, T. E.

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Su, Z.

L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).

Sun, T.

Uy, O. M.

O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

van Breukelen, E.

E. van Breukelen, “Facet nano, a modular star tracker concept for highly miniaturized spacecraft,” in International Astronautical Congress (2009), pp. 12–16.

Votel, R.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

Wang, G.

Wang, X.

Wei, M.

Xing, F.

Yan, C.

C. Yan, L. Huang, and F. Yang, “Installation angle of star sensor based on the mission planning,” CN patent101758934A (30June2010).

Yang, F.

C. Yan, L. Huang, and F. Yang, “Installation angle of star sensor based on the mission planning,” CN patent101758934A (30June2010).

Yoshikawa, S.

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

You, Z.

Zhao, L.

L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).

Acta Astronaut. (1)

G. D. Rogers, M. R. Schwinger, J. T. Kaidy, T. E. Strikwerda, R. Casini, A. Landi, R. Bettarini, and S. Lorenzini, “Autonomous star tracker performance,” Acta Astronaut. 65, 61–74 (2009).
[Crossref]

Appl. Opt. (1)

Handb. Opt. (1)

R. P. Breault, “Control of stray light,” Handb. Opt. 1, 31–38 (1995).

IEEE Aerosp. Electron. Syst. Mag. (1)

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10, 10–16 (1995).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

C. C. Liebe, “Accuracy performance of star trackers – a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38, 587–599 (2002).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

J. Fang and X. Ning, “Installation direction analysis of star sensors by hybrid condition number,” IEEE Trans. Instrum. Meas. 58, 3576–3582 (2009).
[Crossref]

Opt. Eng. (2)

H. Kawano, H. Shimoji, S. Yoshikawa, K. Miyatake, K. Hama, and S. Nakamura, “Solar-light shielding using a near-hemispherical lens for a star sensor,” Opt. Eng. 45, 124403 (2006).
[Crossref]

F. Xing, Y. Dong, and Z. You, “Laboratory calibration of star tracker with brightness independent star identification strategy,” Opt. Eng. 45, 63604 (2006).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

S. H. McCall, S. M. Pompea, R. P. Breault, and N. L. Regens, “Reviews of black surfaces for space and ground-based optical systems,” Proc. SPIE 1753, 158–170 (1993).
[Crossref]

Prog. Aerosp. Sci. (1)

D. M. Prieto, B. P. Graziano, and P. C. Roberts, “Spacecraft drag modelling,” Prog. Aerosp. Sci. 64, 56–65 (2014).
[Crossref]

Sensors (1)

T. Sun, F. Xing, and Z. You, “Optical system error analysis and calibration method of high-accuracy star trackers,” Sensors 13, 4598–4623 (2013).
[Crossref]

Transducer Microsyst. Technol. (1)

L. Zhao, Z. Su, and Y. Hao, “Research on star sensor layout based on geometric position analysis,” Transducer Microsyst. Technol. 12, 34–41 (2013).

Other (11)

C. Yan, L. Huang, and F. Yang, “Installation angle of star sensor based on the mission planning,” CN patent101758934A (30June2010).

D. Mortari and A. Romoli, “StarNav III: a three fields of view star tracker,” in IEEE Aerospace Conference Proceedings (IEEE, 2002), pp. 1–57.

J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications (Springer, 2012).

J. P. Arnoux, “Star sensor baffle optimization: some helpful practical design rules,” in SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation (International Society for Optics and Photonics, 1996), pp. 333–338.

E. van Breukelen, “Facet nano, a modular star tracker concept for highly miniaturized spacecraft,” in International Astronautical Congress (2009), pp. 12–16.

O. M. Uy, S. A. Straka, J. C. Fleming, and M. G. Dittman, “Optical systems degradation, contamination, and stray light: effects, measurements, and control II,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006).

R. P. Breault, “Stray light technology overview in 1988,” in 32nd Annual Technical Symposium (International Society for Optics and Photonics, 1989), pp. 2–9.

R. P. Breault, “Problems and techniques in stray radiation suppression,” in SPIE/SPSE Technical Symposium East (International Society for Optics and Photonics, 1977), pp. 2–23.

D. Michaels and J. Speed, “Ball aerospace star tracker achieves high tracking accuracy for a moving star field,” in IEEE Aerospace Conference (IEEE, 2005), pp. 1–7.

T. Dzamba, J. Enright, D. Sinclair, K. Amankwah, R. Votel, I. Jovanovic, and G. McVittie, “Success by 1000 improvements: flight qualification of the ST-16 star tracker,” in AIAA/USU Conference on Small Satellites (2014).

M. Marciniak and J. Enright, “Validating microsatellite star tracker baffle tests,” in AIAA/AAS Astrodynamics Specialist Conference (2014), p. 4422.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Vector model of the stray light based on the body coordinate system of the satellite. (a) A single vector. (b) The attitude sphere.

Fig. 2.
Fig. 2.

Model of the earthlight relative to the satellite.

Fig. 3.
Fig. 3.

Celestial coordinate system.

Fig. 4.
Fig. 4.

Comparison of the new method and the general method.

Fig. 5.
Fig. 5.

Angle between the sunlight and the axis of the body coordinate system of the satellite at normal attitude. (a) Relationship with time. (b) Relationship with latitude.

Fig. 6.
Fig. 6.

Sunlight distribution in the attitude sphere of the satellite under normal attitude. (a) The sunlight vector area. (b) The sunlight boundary curves.

Fig. 7.
Fig. 7.

Sunlight boundary curves in (a) left-swing attitude and (b) right-swing attitude.

Fig. 8.
Fig. 8.

Earthlight boundary curve at normal attitude.

Fig. 9.
Fig. 9.

Earthlight boundary curves in (a) front-swing attitude and (b) back-swing attitude.

Fig. 10.
Fig. 10.

Earthlight boundary curves at (a) left-swing attitude and (b) right-swing attitude.

Fig. 11.
Fig. 11.

All the boundary curves of the sunlight and the earthlight under multimaneuver attitudes in the -X axis view.

Fig. 12.
Fig. 12.

Vector area free from stray light in the attitude sphere of the satellite under multimaneuver attitudes in the Y axis view.

Fig. 13.
Fig. 13.

Star tracker with an earthlight exclusion angle of 15° and a sunlight exclusion angle of 35°.

Fig. 14.
Fig. 14.

Installation orientations of star trackers in (a) the body coordinate system of a satellite and (b) the actual satellite.

Fig. 15.
Fig. 15.

Angles between the star tracker orientation and the stray light under multimaneuver attitudes. (a) Angle between the star tracker 2 orientation and the sunlight at normal attitude, (b) minimum angle between the star tracker 1 orientation and the earthlight at left-swing 45° attitude, (c) angle between the star tracker 1 orientation and the sunlight at right-swing 15° attitude, (d) angle between the star tracker 2 orientation and the sunlight at right-swing 15° attitude, (e) minimum angle between the star tracker 2 orientation and the earthlight at right-swing 45° attitude, (f) angle between the star tracker 1 orientation and the sunlight at right-swing 45° attitude, (g) and minimum angles between the star tracker orientation and the earthlight at front- and back-swing 45° attitudes.

Fig. 16.
Fig. 16.

Histogram of the angle between the star tracker 2 orientation and the Sun at normal attitude.

Fig. 17.
Fig. 17.

Relationship between the sunlight exclusive angle and the available time ratio of star tracker 2.

Fig. 18.
Fig. 18.

Angles between the star tracker orientation and the Sun under different latitudes of the subsatellite point at normal attitude.

Tables (6)

Tables Icon

Table 1. Maximum and Minimum Angles between the Coordinate Axes and the Vector Areas of the Stray Light

Tables Icon

Table 2. Performance of the Star Tracker

Tables Icon

Table 3. Installation Orientations of the Star Trackers in the Body Coordinate Systems of the Satellites

Tables Icon

Table 4. Angles between the Star Tracker Installation Orientations and the Body Coordinate Systems of the Satellites

Tables Icon

Table 5. Minimal Angles between the Installation Orientations of the Star Trackers and the Sunlight/Earthlight Boundaries

Tables Icon

Table 6. Full-Time-Valid Attitudes

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

δatm=arcsin((Re+d)/Rs),
γ=(αNπ/2)αST=αNαSMΔαπ/2=φΔαπ/2,
p(t)=arctan(sin(2πt/365)cotε).
Δα(t)=αST(t)α(t)={arccos[cos(2πt/365)cosp(t)]2πt/365,(0t182.5),arccos(cos[2π(t182.5)/365]cosp(t182.5))2π(t182.5)/365,(182.5t365).
cosVST=cosi·cos[π2p(t)]+sini·sin[π2p(t)]·cosγ(t).
ξ(t)=arccos{cosi·sin[arctansin(2πt/365)cotε]+sini·cos[arctansin(2πt/365)cotε]·sin[t0π12Δα(t)]}(0t365,0t024).
i=3ns2sinicos4(ε/2)sin[2(αsΩ)]/4n,
a=CdSmna2ρ,
Ω=9.97(Rea)7/2cosi,
ΔΩ=(instani27nsa4a)t2+(nsΔi0tani7nsΔa02a)t,
MOI=qX(π/2)·qZ(π/2)·qZ(u)·qX(i)·qZ(Ω),
MBO=qY(θ)·qX(ϕ)·qZ(λ),
MSB=qY(C)·qX(B)·qZ(A).
Vsun_I=[cosγsun·cosαsuncosγsun·sinαsunsinγsun]T.
Vsun_S=MSB·MBO·MOI·Vsun_I.
{Vvie_O=[sinδ·cosαsinδ·cosαcosδ]T,Vvie_S=MSB·MBO·Vvie_O=[001]T,
Emin=δδatm.
ζf(t,l),
{x2+y2+z2=1,y=cos(Y_max),
{x2+y2+z2=1,y=cos(Y_min).
(x,y,z)[1000cosφsinφ0sinφcosφ]=(x,ycosφzsinφ,ysinφ+zcosφ),
{x2+y2+z2=1,ycosφzsinφ=cos(Y_max/min).
{x2+y2+z2=1,z=cosδatm.
(x,y,z)[cosϕ0sinϕ010sinϕ0cosϕ]=(xcosϕ+zsinϕ,y,xsinϕ+zcosϕ),
{x2+y2+z2=1,xsinϕ+zcosϕ=cosδatm.