Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wide-angle broadband terahertz metamaterial absorber with a multilayered heterostructure

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, a wide-angle broadband perfect absorber is composed of a periodical metamaterial heterostructure. The structure is designed according to the concept that the metamaterial absorber’s resonant frequency range can be manipulated by adjusting the filling factor of a bi-insulator heterostructure. The calculated results reveal that the four-layer herostructure has four perfect absorption peaks at the range of the terahertz frequency band. The related absorption bandwidth is 300 GHz and the average absorptivity is 98.6%. At the same time, the structure is insensitive to the incident angle.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

Binggang Xiao, Mingyue Gu, and Sanshui Xiao
Appl. Opt. 56(19) 5458-5462 (2017)

Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime

Minghui Luo, Su Shen, Lei Zhou, Shangliang Wu, Yun Zhou, and Linsen Chen
Opt. Express 25(14) 16715-16724 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.