Abstract

This paper reports a comprehensive theoretical study of W-shaped complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure consisting of two quantum wells of InAs material using the six-band k.p theory. The entire structure has been supposed to be grown on InP substrate. In order to optimize the optical gain, the probability densities of electrons and holes were optimized in the heterostructure. Following these calculations, dispersion relations for electron and hole energies, and transverse electric and transverse magnetic polarizations dependent dipole matrix elements and momentum matrix elements were calculated and, finally, the optical gain in both polarization modes was calculated. For this optimized complex heterostructure, a very high optical gain of the order of 4500  cm1 in the regime of mid-infrared wavelength 3.2  μm has been achieved. The results suggest that the designed nano-heterostructure may be utilized for mid-infrared region (MIR) applications such as chemical and bio-molecular sensing of molecules, for the applications of spectroscopy in the “fingerprint region” of molecular science, and for detection of atmospheric gases that respond to 3.2 μm wavelength.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of second harmonic generation in hole-doped silicon-germanium quantum wells for mid-infrared sensing

Jacopo Frigerio, Andrea Ballabio, Michele Ortolani, and Michele Virgilio
Opt. Express 26(24) 31861-31872 (2018)

Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells

Huimin Lu, Tongjun Yu, Gangcheng Yuan, Xinjuan Chen, Zhizhong Chen, Genxiang Chen, and Guoyi Zhang
Opt. Lett. 37(17) 3693-3695 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription