Abstract

A phase-sensitive optical time-domain reflectometric (ϕ-OTDR) system based on a novel single-source dual heterodyne detection scheme is proposed and demonstrated. It uses the optical beat-frequency signals as the local oscillator signal containing the modulated frequency, frequency drift and phase fluctuation, while the signal to be detected contains all the forgoing spectral components, in addition to the vibration signal under measurement. Frequency mixing serves to isolate the pure vibration signal from the omnipresent residual frequency and phase fluctuations caused by a less strictly synchronous clock, inherent characteristics of the laser and the acousto-optical modulator, and environment temperature changes. With a reduced burden on data processing, better real-time performance is achieved as well. Using probe light pulses of 4 kHz repetition rate and 80 ns pulse width, a 9 m spatial resolution has been achieved on a 24.6 km sensing fiber, with a detectable frequency range from 5 Hz to 1.715 kHz, with a signal-to-noise ratio greater than 23.5 dB. All the above parameters are close to the maximum theoretical values. The drastically improved system demodulation characteristics foreshadow better performance and improved reliability in engineering applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
SNR dependence of measurement stability of heterodyne phase-sensitive optical time-domain reflectometry

Yang Lu, Zhijie Yu, Zewu Ju, Xiaoyang Hu, Mo Chen, and Zhou Meng
Appl. Opt. 59(21) 6333-6339 (2020)

Low-noise and high-sensitivity Φ-OTDR based on an optimized dual-pulse heterodyne detection scheme

Zewu Ju, Zhijie Yu, Qingkai Hou, Kang Lou, Mo Chen, Yang Lu, and Zhou Meng
Appl. Opt. 59(7) 1864-1870 (2020)

Phase demodulation method in phase-sensitive OTDR without coherent detection

Zhou Sha, Hao Feng, and Zhoumo Zeng
Opt. Express 25(5) 4831-4844 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription